We initiate the study of certain families of L-functions attached to characters of subgroups of higher-rank tori, and of their average at the central point. In particular, we evaluate the average of the values L( 2 1 , chi a )L( 21 , chi b ) for arbitrary ...
In this paper, we propose a reduced-order modeling strategy for two-way Dirichlet-Neumann parametric coupled problems solved with domain-decomposition (DD) sub-structuring methods. We split the original coupled differential problem into two sub-problems wi ...
We prove that the coefficients of a GL3 x GL2 Rankin-Selberg L-function do not correlate with a wide class of trace functions of small conductor modulo primes, generalizing the corresponding result of Fouvry, Kowalski, and Michel for GL2 and of Kowalski, L ...
We prove an asymptotic formula for the second moment of a product of two Dirichlet L-functions on the critical line, which has a power saving in the error term and which is uniform with respect to the involved Dirichlet characters. As special cases we give ...
We revisit a recent bound of I. Shparlinski and T. Zhang on bilinear forms with Kloosterman sums, and prove an extension for correlation sums of Kloosterman sums against Fourier coefficients of modular forms. We use these bounds to improve on earlier resul ...
Function computation over Gaussian networks with orthogonal components is studied for arbitrarily correlated discrete memoryless sources. Two classes of functions are considered: 1) the arithmetic sum function and 2) the type function. The arithmetic sum f ...
Institute of Electrical and Electronics Engineers2014
Function computation of arbitrarily correlated discrete sources over Gaussian networks with multiple access components but no broadcast is studied. Two classes of functions are considered: the arithmetic sum function and the frequency histogram function. T ...
The Mobius inversion formula of the free monogenic inverse semigroup is represented by the Mobius function for Cauchy product. In this short note we describe a Dirichlet analogue of this inverse semigroup. ...
We present asymptotically sharp inequalities for the eigenvalues mu(k) of the Laplacian on a domain with Neumann boundary conditions, using the averaged variational principle introduced in [14]. For the Riesz mean R-1(z) of the eigenvalues we improve the k ...
We study the average of the product of the central values of two L-functions of modular forms f and g twisted by Dirichlet characters to a large prime modulus q. As our principal tools, we use spectral theory to develop bounds on averages of shifted convol ...