Puissance du continuEn mathématiques, plus précisément en théorie des ensembles, on dit qu'un ensemble E a la puissance du continu (ou parfois le cardinal du continu) s'il est équipotent à l'ensemble R des nombres réels, c'est-à-dire s'il existe une bijection de E dans R. Le cardinal de R est parfois noté , en référence au , nom donné à l'ensemble ordonné (R, ≤). Cet ordre (et a fortiori le cardinal de l'ensemble sous-jacent) est entièrement déterminé (à isomorphisme près) par quelques propriétés classiques.
Aleph (nombre)vignette|Aleph-zéro, le plus petit aleph En théorie des ensembles, les alephs sont les cardinaux des ensembles infinis bien ordonnés. En quelque sorte, le cardinal d'un ensemble représente sa « taille », indépendamment de toute structure que puisse avoir cet ensemble (celle d'ordre en particulier dans le cas présent). Ils sont nommés ainsi d'après la lettre aleph, notée א, première lettre de l'alphabet hébreu, qui est utilisée pour les représenter.
Nombre transfinivignette|Le mathématicien George Cantor (1918). Les nombres transfinis sont des nombres exposés et étudiés par le mathématicien Georg Cantor. Se fondant sur ses résultats, il a introduit une sorte de hiérarchie dans l'infini, en développant la théorie des ensembles. Un nombre entier naturel peut être utilisé pour décrire la taille d'un ensemble fini, ou pour désigner la position d'un élément dans une suite. Ces deux utilisations correspondent aux notions de cardinal et d'ordinal respectivement.
ÉquipotenceEn mathématiques, l’équipotence est une relation entre ensembles, selon laquelle deux ensembles sont équivalents lorsqu'il existe une bijection entre eux. Cette notion permet de définir la cardinalité, c'est-à-dire le nombre d'éléments d'un ensemble, qu'il soit fini ou infini. La subpotence est une relation plus faible, satisfaite lorsqu'il existe une injection entre deux ensembles. Elle permet de définir une comparaison de taille entre les ensembles, sans présupposer la construction des nombres cardinaux.
Théorème d'EastonEn théorie des ensembles, le théorème d'Easton est un résultat décrivant les nombres cardinaux possibles pour des ensembles de parties. (améliorant un résultat de Robert Solovay) montra par forcing que les seules contraintes sur les valeurs possibles de 2κ, où κ est un cardinal régulier, sont celles découlant du théorème de Cantor et du théorème de König : , et (où cf(α) est la cofinalité de α).
New FoundationsEn logique mathématique, New Foundations (NF) est une théorie des ensembles axiomatique introduite par Willard Van Orman Quine en 1937, dans un article intitulé « New Foundations for Mathematical Logic », et qui a connu un certain nombre de variantes. Pour éviter le paradoxe de Russell, le principe de compréhension est restreint aux formules stratifiées, une restriction inspirée de la théorie des types, mais où la notion de type est implicite.
Théorème de Cantorvignette|Georg Cantor Le théorème de Cantor est un théorème mathématique, dans le domaine de la théorie des ensembles. Il énonce que le cardinal d'un ensemble E est toujours strictement inférieur au cardinal de l'ensemble de ses parties P(E), c'est-à-dire essentiellement qu'il n'existe pas de bijection entre E et P(E). Combiné avec l'axiome de l'ensemble des parties et l'axiome de l'infini de la théorie des ensembles usuelle, ce théorème implique qu'il existe une hiérarchie infinie d'ensembles infinis en termes de cardinalité.
Ensemble infini non dénombrableUn ensemble infini non dénombrable est un ensemble qui est « trop gros » pour être dénombrable. De manière précise, c'est un ensemble infini qui ne peut être mis en bijection avec les entiers naturels. En présence de l'axiome du choix, cela signifie que son cardinal est strictement supérieur au cardinal du dénombrable. On dit souvent simplement ensemble non dénombrable. L'ensemble des nombres réels en est un exemple. Avec l'hypothèse généralisée du continu, un ensemble des cardinalités infinies non dénombr
Nombre cardinalvignette|Le nombre cardinal des deux ensembles X et Y est 4 En linguistique, les nombres entiers naturels zéro, un, deux, trois, etc. s’appellent des adjectifs numéraux cardinaux. En théorie des ensembles, le nombre cardinal ou cardinal d'un ensemble E (fini ou infini) est, intuitivement, le « nombre » d'éléments lui appartenant. On peut définir formellement ce « nombre » comme la classe de tous les ensembles équipotents à E (c'est-à-dire en bijection avec E), ou, de manière fort différente, comme le plus petit ordinal équipotent à E.
Hypothèse du continuEn théorie des ensembles, l'hypothèse du continu (HC), due à Georg Cantor, affirme qu'il n'existe aucun ensemble dont le cardinal est strictement compris entre le cardinal de l'ensemble des entiers naturels et celui de l'ensemble des nombres réels. En d'autres termes : tout ensemble strictement plus grand, au sens de la cardinalité, que l'ensemble des entiers naturels doit contenir une « copie » de l'ensemble des nombres réels.