Viggo Brun est un mathématicien norvégien né le à Lier et mort le à Drøbak.
Il est essentiellement connu comme étant le créateur d'une méthode de crible (le ), inspirée de celle d'Ératosthène, mais plus puissante. Un des résultats célèbres de cette méthode est que la somme des inverses des nombres premiers jumeaux est convergente. En son honneur, on a défini la somme de cette série comme étant la constante de Brun.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, la théorie des cribles est une partie de la théorie des nombres ayant pour but d'estimer, à défaut de dénombrer, les cardinaux de sous-ensembles (éventuellement infinis) de N en approchant la fonction indicatrice du sous-ensemble considéré. Cette technique a pour origine le crible d'Ératosthène, et dans ce cas, le but était d'étudier l'ensemble des nombres premiers. Un des nombreux résultats que l'on doit aux cribles a été découvert par Viggo Brun en 1919.
In the field of number theory, the Brun sieve (also called Brun's pure sieve) is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Viggo Brun in 1915 and later generalized to the fundamental lemma of sieve theory by others. In terms of sieve theory the Brun sieve is of combinatorial type; that is, it derives from a careful use of the inclusion–exclusion principle. Let be a finite set of positive integers.
En mathématiques, deux nombres premiers jumeaux sont deux nombres premiers qui ne diffèrent que de 2. Hormis pour le couple (2, 3), cet écart entre nombres premiers de 2 est le plus petit possible. Les plus petits nombres premiers jumeaux sont 3 et 5, 5 et 7, 11 et 13. En , les plus grands nombres premiers jumeaux connus, découverts en 2016 dans le cadre du projet de calcul distribué PrimeGrid, sont × 2 ± 1 ; ils possèdent chiffres en écriture décimale.
Explore les tests de bonté d'ajustement, les tests X2 et les tests d'indépendance dans les statistiques, avec des exemples pratiques et des applications.