Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We present a comprehensive analysis of the submissions to the first edition of the Endoscopy Artefact Detection challenge (EAD). Using crowd-sourcing, this initiative is a step towards understanding the limitations of existing state-of-the-art computer vis ...
We introduce a generic \emph{two-loop} scheme for smooth minimax optimization with strongly-convex-concave objectives. Our approach applies the accelerated proximal point framework (or Catalyst) to the associated \emph{dual problem} and takes full advantag ...
Nonconvex minimax problems appear frequently in emerging machine learning applications, such as generative adversarial networks and adversarial learning. Simple algorithms such as the gradient descent ascent (GDA) are the common practice for solving these ...
The large capacity of neural networks enables them to learn complex functions. To avoid overfitting, networks however require a lot of training data that can be expensive and time-consuming to collect. A common practical approach to attenuate overfitting i ...
Online donation platforms, such as DonorsChoose, GlobalGiving, or CrowdFunder, enable donors to financially support entities in need. In a typical scenario, after a fundraiser submits a request specifying her need, donors contribute financially to help rai ...
Training deep neural networks requires well-annotated datasets. However, real world datasets are often noisy, especially in a multi-label scenario, i.e. where each data point can be attributed to more than one class. To this end, we propose a regularizatio ...
Optical diffraction tomography is an effective tool to estimate the refractive indices of unknown objects. It proceeds by solving an ill-posed inverse problem for which the wave equation governs the scattering events. The solution has traditionally been de ...
This paper studies the problem of learning under both large datasets and large-dimensional feature space scenarios. The feature information is assumed to be spread across agents in a network, where each agent observes some of the features. Through local co ...
Regularization, filtering, and denoising of biomedical images requires the use of appropriate filters and the adoption of efficient regularization criteria. It has been shown that the Stein’s Unbiased Risk Estimate (SURE) can be used as a proxy for the mea ...
Introduction of optimisation problems in which the objective function is black box or obtaining the gradient is infeasible, has recently raised interest in zeroth-order optimisation methods. As an example finding adversarial examples for Deep Learning mode ...