Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
High frequency wind time series measured at different heights from the ground (from 1.5 to 25.5 meters) in an urban area were investigated by using the variance of the coefficients of their wavelet transform. Two ranges of scales were identified, sensitive ...
Eco-hydrologicalmodels are useful tools for water qualitymanagement, but there implementation may require high-resolution boundary condition data which are often patchy in time due to monitoring costs. In this report, we compare the performance of gradient ...
Optical tomography has been widely investigated for biomedical imaging applications. In recent years, it has been combined with digital holography and has been employed to produce high quality images of phase objects such as cells. In this Thesis, we look ...
This paper focuses on the design of an asynchronous dual solver suitable for model predictive control (MPC) applications. The proposed solver relies on a state-of-the-art variance reduction (VR) scheme, previously used in the context of proximal stochastic ...
In this paper, we develop a stochastic-gradient learning algorithm for situations involving streaming data that arise from an underlying clustered structure. In such settings, the variance of gradient noise can be decomposed into the in-cluster variance si ...
In this work, we show that uniform integrability is not a necessary condition for central limit theorems (CLT) to hold for normalized multilevel Monte Carlo (MLMC) estimators and we provide near optimal weaker conditions under which the CLT is achieved. In ...
Here we present an electroencephalographic (EEG) collection of 71-channel datasets recorded from 14 subjects (7 males, 7 females, aged 20–40 years) while performing a visual working memory task with a T set of 150 Independent Component Analysis (ICA) decom ...
During the past few years, probabilistic approaches to imitation learning have earned a relevant place in the robotics literature. One of their most prominent features is that, in addition to extracting a mean trajectory from task demonstrations, they prov ...
Small-variance asymptotics is emerging as a useful technique for inference in large-scale Bayesian non-parametric mixture models. This paper analyzes the online learning of robot manipulation tasks with Bayesian non-parametric mixture models under small-va ...
The design and analysis of machine learning algorithms typically considers the problem of learning on a single task, and the nature of learning in such scenario is well explored. On the other hand, very often tasks faced by machine learning systems arrive ...