Risque relatifvignette|Risque relatif de mortalité en fonction de l'IMC chez les femmes blanches américaines qui n'ont jamais fumé. Berrington de Gonzalez A, Hartge P, Cerhan JR, et al. (décembre 2010). "Body-mass index and mortality among 1.46 million white adults". N. Engl. J. Med. 363 (23) : 2211-9. DOI:10.1056/NEJMoa1000367. PMID 21121834. Le risque relatif (RR) est une mesure statistique souvent utilisée en épidémiologie, mesurant le risque de survenue d'un événement dans un groupe par rapport à l’autre.
Cote (probabilités)Dans les jeux de hasard et des statistiques, la cote d'un événement (odds en anglais) est le ratio entre la probabilité que l'événement se produise et la probabilité qu'il ne se produise pas. On l'exprime souvent comme une paire de nombres où le dénominateur de la cote est ramené à 1. En particulier dans les paris et les jeux d'argent, la cote exprime le gain espéré dans le cas où l'événement sur lequel on a misé se réalise ; par exemple, une « cote de 4 contre 1 » traduit le fait qu'on gagnerait 4 fois sa mise.
Taille d'effetEn statistique, une taille d'effet est une mesure de la force de l'effet observé d'une variable sur une autre et plus généralement d'une inférence. La taille d'un effet est donc une grandeur statistique descriptive calculée à partir de données observées empiriquement afin de fournir un indice quantitatif de la force de la relation entre les variables et non une statistique inférentielle qui permettrait de conclure ou non si ladite relation observée dans les données existe bien dans la réalité.
Étude cas-témoinsUne étude cas-témoins est une étude statistique observationnelle rétrospective utilisée en épidémiologie. Les études cas-témoins sont utilisées pour mettre en évidence des facteurs qui peuvent contribuer à l'apparition d'une maladie en comparant des sujets qui ont cette maladie (les cas) avec des sujets qui n'ont pas la maladie mais qui sont similaires par ailleurs (les témoins).
Tableau de contingenceUn tableau de contingence est une méthode de représentation de données issues d’un comptage permettant d'estimer la dépendance entre deux caractères. Elle consiste à croiser deux caractères d'une population (par exemple une classe d'âge et un score) en dénombrant l'effectif correspondant à la conjonction « caractère 1 » et « caractère 2 ». Les effectifs partiels sont rassemblés dans un tableau à double entrée, par ligne pour le premier caractère, et par colonne en fonction du second caractère : c'est le « tableau de contingence ».
Binary dataBinary data is data whose unit can take on only two possible states. These are often labelled as 0 and 1 in accordance with the binary numeral system and Boolean algebra. Binary data occurs in many different technical and scientific fields, where it can be called by different names including bit (binary digit) in computer science, truth value in mathematical logic and related domains and binary variable in statistics. A discrete variable that can take only one state contains zero information, and is the next natural number after 1.
Modèle linéaire généraliséEn statistiques, le modèle linéaire généralisé (MLG) souvent connu sous les initiales anglaises GLM est une généralisation souple de la régression linéaire. Le GLM généralise la régression linéaire en permettant au modèle linéaire d'être relié à la variable réponse via une fonction lien et en autorisant l'amplitude de la variance de chaque mesure d'être une fonction de sa valeur prévue, en fonction de la loi choisie.
Rapport (mathématiques)En sciences, un rapport est le quotient de deux valeurs qui se rapportent à des grandeurs de la même espèce. Quand le quotient se rapporte à des grandeurs d'espèces différentes, on parle de taux. Un rapport est une grandeur sans dimension : il ne conserve aucune trace des grandeurs qu'il compare. Un rapport s'exprime souvent en pourcentage. Dans les spécialités les plus en relation avec l'aire anglophone, on emploie souvent le mot d'origine latine , dont la définition est identique.
Régression logistiqueEn statistiques, la régression logistique ou modèle logit est un modèle de régression binomiale. Comme pour tous les modèles de régression binomiale, il s'agit d'expliquer au mieux une variable binaire (la présence ou l'absence d'une caractéristique donnée) par des observations réelles nombreuses, grâce à un modèle mathématique. En d'autres termes d'associer une variable aléatoire de Bernoulli (génériquement notée ) à un vecteur de variables aléatoires . La régression logistique constitue un cas particulier de modèle linéaire généralisé.
Pearson correlation coefficientIn statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations.