Fonction zêta de Riemannvignette|upright=2|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : des couleurs vives indiquent des valeurs proches de 0 et la nuance indique l'argument de la valeur. Le point blanc pour s = 1 est le pôle ; les points noirs sur l'axe réel négatif (demi-droite horizontale) et sur la droite critique Re(s) = 1/2 (droite verticale) sont les zéros. vignette|upright=2|Carte des couleurs utilisées dans la figure du dessus.
Nombre de BernoulliEn mathématiques, les nombres de Bernoulli, notés B (ou parfois b pour ne pas les confondre avec les polynômes de Bernoulli ou avec les nombres de Bell), constituent une suite de nombres rationnels.
Fonction gammaEn mathématiques, la fonction gamma (notée par Γ la lettre grecque majuscule gamma de l'alphabet grec) est une fonction utilisée communément, qui prolonge de la fonction factorielle à l'ensemble des nombres complexes. En ce sens, il s'agit une fonction complexe. Elle est considérée également comme une fonction spéciale. La fonction gamma est défini pour tous les nombres complexes, à l'exception des entiers négatifs. On a pour tout entier strictement positif, où est la factorielle de , c'est-à-dire le produit des entiers entre 1 et : .
Nombre transcendantEn mathématiques, un nombre transcendant sur les rationnels est un nombre réel ou complexe qui n'est racine d'aucun polynôme non nuloù n est un entier naturel et les coefficients a sont des rationnels non tous nuls, ou encore (en multipliant ces n + 1 rationnels par un dénominateur commun) qui n'est racine d'aucun polynôme non nul à coefficients entiers. Un nombre réel ou complexe est donc transcendant si et seulement s’il n'est pas algébrique. Comme tout nombre rationnel est algébrique, tout nombre transcendant est donc un nombre irrationnel.