Classical Hamiltonian quaternionsWilliam Rowan Hamilton invented quaternions, a mathematical entity in 1843. This article describes Hamilton's original treatment of quaternions, using his notation and terms. Hamilton's treatment is more geometric than the modern approach, which emphasizes quaternions' algebraic properties. Mathematically, quaternions discussed differ from the modern definition only by the terminology which is used. Hamilton defined a quaternion as the quotient of two directed lines in tridimensional space; or, more generally, as the quotient of two vectors.
Euclidean plane isometryIn geometry, a Euclidean plane isometry is an isometry of the Euclidean plane, or more informally, a way of transforming the plane that preserves geometrical properties such as length. There are four types: translations, rotations, reflections, and glide reflections (see below under ). The set of Euclidean plane isometries forms a group under composition: the Euclidean group in two dimensions. It is generated by reflections in lines, and every element of the Euclidean group is the composite of at most three distinct reflections.
Circular symmetryIn geometry, circular symmetry is a type of continuous symmetry for a planar object that can be rotated by any arbitrary angle and map onto itself. Rotational circular symmetry is isomorphic with the circle group in the complex plane, or the special orthogonal group SO(2), and unitary group U(1). Reflective circular symmetry is isomorphic with the orthogonal group O(2). A 2-dimensional object with circular symmetry would consist of concentric circles and annular domains.
Sens de rotation horaire et anti-horaireUne rotation peut se produire dans deux sens : le sens horaire (dans le même sens que les aiguilles d'une horloge : depuis le haut vers la droite, puis vers le bas puis vers la gauche). L'opposé est le sens antihoraire. Fichier:Clockwise Arrow.svg|alt=Illustration d'une flèche allant du haut vers la droite, puis vers le bas et enfin vers la gauche.|Le sens de rotation horaire. Fichier:Counterclockwise Arrow.svg|alt=Illustration d'une flèche allant du haut vers la gauche, puis vers le bas et enfin vers la droite.
Symmetry in mathematicsSymmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. Given a structured object X of any sort, a symmetry is a mapping of the object onto itself which preserves the structure. This can occur in many ways; for example, if X is a set with no additional structure, a symmetry is a bijective map from the set to itself, giving rise to permutation groups.