HyperplanEn mathématiques et plus particulièrement en algèbre linéaire et géométrie, les hyperplans d'un espace vectoriel E de dimension quelconque sont la généralisation des plans vectoriels d'un espace de dimension 3 : ce sont les sous-espaces vectoriels de codimension 1 dans E. Si E est de dimension finie n non nulle, ses hyperplans sont donc ses sous-espaces de dimension n – 1 : par exemple l'espace nul dans une droite vectorielle, une droite vectorielle dans un plan vectoriel Soient E un espace vectoriel et H un sous-espace.
Screw axisA screw axis (helical axis or twist axis) is a line that is simultaneously the axis of rotation and the line along which translation of a body occurs. Chasles' theorem shows that each Euclidean displacement in three-dimensional space has a screw axis, and the displacement can be decomposed into a rotation about and a slide along this screw axis. Plücker coordinates are used to locate a screw axis in space, and consist of a pair of three-dimensional vectors. The first vector identifies the direction of the axis, and the second locates its position.
Rotations and reflections in two dimensionsIn Euclidean geometry, two-dimensional rotations and reflections are two kinds of Euclidean plane isometries which are related to one another. A rotation in the plane can be formed by composing a pair of reflections. First reflect a point P to its image P′ on the other side of line L1. Then reflect P′ to its image P′′ on the other side of line L2. If lines L1 and L2 make an angle θ with one another, then points P and P′′ will make an angle 2θ around point O, the intersection of L1 and L2. I.e.
Orthogonal transformationIn linear algebra, an orthogonal transformation is a linear transformation T : V → V on a real inner product space V, that preserves the inner product. That is, for each pair u, v of elements of V, we have Since the lengths of vectors and the angles between them are defined through the inner product, orthogonal transformations preserve lengths of vectors and angles between them. In particular, orthogonal transformations map orthonormal bases to orthonormal bases. Orthogonal transformations are injective: if then , hence , so the kernel of is trivial.
HyperplanEn mathématiques et plus particulièrement en algèbre linéaire et géométrie, les hyperplans d'un espace vectoriel E de dimension quelconque sont la généralisation des plans vectoriels d'un espace de dimension 3 : ce sont les sous-espaces vectoriels de codimension 1 dans E. Si E est de dimension finie n non nulle, ses hyperplans sont donc ses sous-espaces de dimension n – 1 : par exemple l'espace nul dans une droite vectorielle, une droite vectorielle dans un plan vectoriel Soient E un espace vectoriel et H un sous-espace.
Motion (geometry)In geometry, a motion is an isometry of a metric space. For instance, a plane equipped with the Euclidean distance metric is a metric space in which a mapping associating congruent figures is a motion. More generally, the term motion is a synonym for surjective isometry in metric geometry, including elliptic geometry and hyperbolic geometry. In the latter case, hyperbolic motions provide an approach to the subject for beginners. Motions can be divided into direct and indirect motions.
Row and column vectorsIn linear algebra, a column vector with m elements is an matrix consisting of a single column of m entries, for example, Similarly, a row vector is a matrix for some n, consisting of a single row of n entries, (Throughout this article, boldface is used for both row and column vectors.) The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: and The set of all row vectors with n entries in a given field (such as the real numbers) forms an n-dimensional vector space; similarly, the set of all column vectors with m entries forms an m-dimensional vector space.
Rotation en quatre dimensionsEn mathématiques, les rotations en quatre dimensions (souvent appelées simplement rotations 4D) sont des transformations de l'espace euclidien , généralisant la notion de rotation ordinaire dans l'espace usuel ; on les définit comme des isométries directes ayant un point fixe (qu'on peut prendre comme origine, identifiant les rotations aux rotations vectorielles) ; le groupe de ces rotations est noté SO(4) : il est en effet isomorphe au groupe spécial orthogonal d'ordre 4.
Chirality (mathematics)In geometry, a figure is chiral (and said to have chirality) if it is not identical to its , or, more precisely, if it cannot be mapped to its mirror image by rotations and translations alone. An object that is not chiral is said to be achiral. A chiral object and its mirror image are said to be enantiomorphs. The word chirality is derived from the Greek χείρ (cheir), the hand, the most familiar chiral object; the word enantiomorph stems from the Greek ἐναντίος (enantios) 'opposite' + μορφή (morphe) 'form'.
Rodrigues' rotation formulaIn the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3), the group of all rotation matrices, from an axis–angle representation. In other words, the Rodrigues' formula provides an algorithm to compute the exponential map from so(3), the Lie algebra of SO(3), to SO(3) without actually computing the full matrix exponential.