Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'histoire, l'architecture et les spécifications des capteurs d'images optiques, y compris les techniques de suppression du bruit et les méthodes de mesure.
Se penche sur les estimateurs de vraisemblance maximale, leurs propriétés et leur comportement asymptotique, en mettant l'accent sur la cohérence et la normalité asymptotique.
Explore les distributions de probabilité pour les variables aléatoires dans les études sur la pollution atmosphérique et le changement climatique, couvrant les statistiques descriptives et inférentielles.
Introduit des statistiques inférentielles, couvrant l'échantillonnage, la tendance centrale, la dispersion, les histogrammes, les scores z et la distribution normale.
Explore les caractéristiques de la distribution normale, les scores Z, la probabilité dans les statistiques inférentielles, les effets d'échantillon et l'approximation de la distribution binomiale.
Explore l'estimation des paramètres, les erreurs standard et les intervalles de confiance en utilisant le théorème de la limite centrale et des exemples pratiques.