Arthur Moritz SchoenfliesArthur Moritz Schoenflies (ou Schönflies), né le à Landsberg-sur-la-Warthe et mort le à Francfort-sur-le-Main, est un mathématicien allemand de la fin du et du début du , célèbre pour sa proposition de classement des cristaux en 230 groupes d'espace publiée en 1891 et pour sa notation des groupes ponctuels de symétrie et des groupes d'espace, communément appelée la notation Schoenflies. Il commence à étudier les mathématiques à l'université Humboldt de Berlin juste après la guerre de 1870 avec Ernst Kummer et Karl Weierstrass.
Adolf HurwitzAdolf Hurwitz (né à Hildesheim le - mort à Zurich le ) est un mathématicien allemand qui est une des figures importantes des mathématiques de la seconde moitié du . Il fait ses études doctorales sous la direction de Felix Klein à Leipzig, soutenant sa thèse sur les fonctions elliptiques modulaires en 1881. En 1884, on lui offre un poste de professeur à Kœnigsberg ; il y rencontre le jeune David Hilbert, sur qui il exerce une grande influence. Il occupe en 1892 une chaire de mathématiques à l'École polytechnique fédérale de Zurich et y enseigne le reste de sa vie.
Automorphic functionIn mathematics, an automorphic function is a function on a space that is invariant under the action of some group, in other words a function on the quotient space. Often the space is a complex manifold and the group is a discrete group. In mathematics, the notion of factor of automorphy arises for a group acting on a complex-analytic manifold. Suppose a group acts on a complex-analytic manifold . Then, also acts on the space of holomorphic functions from to the complex numbers.
Dessin d'enfant (mathématiques)En mathématiques, les dessins d'enfants, tels qu'ils ont été introduits par Alexandre Grothendieck dans son Esquisse d'un programme, sont des objets combinatoires permettant d'énumérer de manière simple et élégante les classes d'isomorphisme de revêtements étales de la droite projective privée de trois points. Le groupe de Galois absolu opérant de manière naturelle sur de tels revêtements, le but de la théorie des dessins d'enfants est de traduire cette action en termes combinatoires.
Belyi's theoremIn mathematics, Belyi's theorem on algebraic curves states that any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only. This is a result of G. V. Belyi from 1979. At the time it was considered surprising, and it spurred Grothendieck to develop his theory of dessins d'enfant, which describes non-singular algebraic curves over the algebraic numbers using combinatorial data.