OctogoneUn octogone (du grec ὀκτάγωνον oktágōnon, cf. ὀκτώ oktṓ « huit » et γωνία gōnía « angle ») est un polygone à huit sommets, donc huit côtés et vingt diagonales. La somme des angles internes d'un octogone non croisé est égale à , soit °. Un octogone régulier est un octogone dont les huit côtés ont la même longueur et dont les angles internes ont la même valeur. Il existe un octogone régulier étoilé (l'octagramme régulier, noté {8/3}) mais usuellement, « octogone régulier » désigne implicitement l'octogone régulier convexe, noté {8}.
DécagoneUn décagone est un polygone à 10 sommets, donc 10 côtés et 35 diagonales. La somme des angles internes d'un décagone non croisé vaut °. Un décagone régulier est un décagone dont les dix côtés ont la même longueur et dont les angles internes ont même mesure. Il y en a deux : un étoilé (le décagramme noté {10/3}) et un convexe (noté {10}). C'est de ce dernier qu'il s'agit lorsqu'on dit « le décagone régulier ». Il est constructible. L'aire d'un décagone régulier de côté a vaut Cette construction est excessivement simple mais n'est pas forcément exacte : Tracer un cercle Γ de centre O.
TétradécagoneUn tétradécagone ou tétrakaidécagone ou quadridécagone est un polygone à 14 sommets, donc 14 côtés et 77 diagonales. La somme des angles internes de tout tétradécagone non croisé vaut . Un tétradécagone régulier est un tétradécagone dont les 14 côtés ont la même longueur et dont les 14 angles internes ont même mesure. Il y en a trois : deux étoilés (les tétradécagrammes notés {14/3} et {14/5}) et un convexe (noté {14}). C'est de ce dernier qu'il s'agit lorsqu'on dit « le tétradécagone régulier ».
Pavage hexagonal tronquéIn geometry, the truncated hexagonal tiling is a semiregular tiling of the Euclidean plane. There are 2 dodecagons (12-sides) and one triangle on each vertex. As the name implies this tiling is constructed by a truncation operation applies to a hexagonal tiling, leaving dodecagons in place of the original hexagons, and new triangles at the original vertex locations. It is given an extended Schläfli symbol of t{6,3}. Conway calls it a truncated hextille, constructed as a truncation operation applied to a hexagonal tiling (hextille).
OctadécagoneUn octadécagone ou octakaidécagone est un polygone à 18 sommets, donc 18 côtés et 135 diagonales. La somme des angles internes d'un octadécagone non croisé vaut . Le nom du polygone est formé à partir des préfixes octo et déca. Octo provient du grec ancien ὀκτώ (octo, huit) et déca de δέκα (déca, dix). En grec ancien, dix-huit se dit ὀκτὼ καὶ δέκα (octo kai deka). Un octadécagone régulier est un octadécagone dont les 18 côtés ont la même longueur et dont les angles internes ont même mesure.
Truncated 5-cellIn geometry, a truncated 5-cell is a uniform 4-polytope (4-dimensional uniform polytope) formed as the truncation of the regular 5-cell. There are two degrees of truncations, including a bitruncation. The truncated 5-cell, truncated pentachoron or truncated 4-simplex is bounded by 10 cells: 5 tetrahedra, and 5 truncated tetrahedra. Each vertex is surrounded by 3 truncated tetrahedra and one tetrahedron; the vertex figure is an elongated tetrahedron. The truncated 5-cell may be constructed from the 5-cell by truncating its vertices at 1/3 of its edge length.
Truncated tesseractIn geometry, a truncated tesseract is a uniform 4-polytope formed as the truncation of the regular tesseract. There are three truncations, including a bitruncation, and a tritruncation, which creates the truncated 16-cell. The truncated tesseract is bounded by 24 cells: 8 truncated cubes, and 16 tetrahedra. Truncated tesseract (Norman W. Johnson) Truncated tesseract (Acronym tat) (George Olshevsky, and Jonathan Bowers) The truncated tesseract may be constructed by truncating the vertices of the tesseract at of the edge length.