Théorie algorithmique de l'informationLa théorie algorithmique de l'information, initiée par Kolmogorov, Solomonov et Chaitin dans les années 1960, vise à quantifier et qualifier le contenu en information d'un ensemble de données, en utilisant la théorie de la calculabilité et la notion de machine universelle de Turing. Cette théorie permet également de formaliser la notion de complexité d'un objet, dans la mesure où l'on considère qu'un objet (au sens large) est d'autant plus complexe qu'il faut beaucoup d'informations pour le décrire, ou — à l'inverse — qu'un objet contient d'autant plus d'informations que sa description est longue.
Minimum message lengthMinimum message length (MML) is a Bayesian information-theoretic method for statistical model comparison and selection. It provides a formal information theory restatement of Occam's Razor: even when models are equal in their measure of fit-accuracy to the observed data, the one generating the most concise explanation of data is more likely to be correct (where the explanation consists of the statement of the model, followed by the lossless encoding of the data using the stated model).
Longueur de description minimaleLa longueur de description minimale ou LDM (MDL pour Minimum Description Length en anglais) est un concept inventé par Jorma Rissanen en 1978 et utilisé en théorie de l'information et en compression de données. Le principe est basé sur l'affirmation suivante : toute régularité dans un ensemble de données peut être utilisée afin de compresser l'information, c'est-à-dire l'exprimer à l'aide d'un nombre réduit de symboles. Théorie de l'information Jorma Rissanen, « Modeling by shortest data description », Automatica, vol 14, No 5, pp.
Solomonoff's theory of inductive inferenceSolomonoff's theory of inductive inference is a mathematical theory of induction introduced by Ray Solomonoff, based on probability theory and theoretical computer science. In essence, Solomonoff's induction derives the posterior probability of any computable theory, given a sequence of observed data. This posterior probability is derived from Bayes' rule and some universal prior, that is, a prior that assigns a positive probability to any computable theory.
Probabilité algorithmiqueEn théorie algorithmique de l'information, la probabilité algorithmique, aussi connue comme probabilité de Solomonoff, est une méthode permettant d’assigner une probabilité à une observation donnée. Il a été inventé par Ray Solomonoff dans les années 1960. Elle est utilisée dans la théorie de l'inférence inductive et dans l'analyse des algorithmes. En particulier, dans sa thèorie de l'induction, Solomonoff utilise une telle formulation pour exprimer la probabilité a priori dans la formule de Bayes.
Probabilité a prioriDans le théorème de Bayes, la probabilité a priori (ou prior) désigne une probabilité se fondant sur des données ou connaissances antérieures à une observation. Elle s'oppose à la probabilité a posteriori (ou posterior) correspondante qui s'appuie sur les connaissances postérieures à cette observation. Le théorème de Bayes s'énonce de la manière suivante : si . désigne ici la probabilité a priori de , tandis que désigne la probabilité a posteriori, c'est-à-dire la probabilité conditionnelle de sachant .
Rasoir d'Ockhamvignette|Frater Occham iste : illustration manuscrite de Guillaume d'Ockham (1341). Le rasoir d'Ockham ou rasoir d'Occam est un principe de raisonnement philosophique entrant dans les concepts de rationalisme et de nominalisme. Le terme vient de « raser » qui, en philosophie, signifie « éliminer des explications non nécessaires d'un phénomène » et du philosophe du Guillaume d'Ockham. Également appelé principe de simplicité, principe d'économie ou principe de parcimonie (en latin « lex parsimoniae »), il peut se formuler comme suit : Une formulation plus moderne est que .
Induction (logique)L'induction est historiquement le nom utilisé pour signifier un genre de raisonnement qui se propose de chercher des lois générales à partir de l'observation de faits particuliers, sur une base probabiliste. Remarque : Bien qu'associée dans le titre de cet article à la logique, la présentation qui suit correspond surtout à la notion bayésienne, utilisée consciemment ou non, de l'induction.
Inférence bayésiennevignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements.
Complexité de KolmogorovEn informatique théorique et en mathématiques, plus précisément en théorie de l'information, la complexité de Kolmogorov, ou complexité aléatoire, ou complexité algorithmique d'un objet — nombre, , chaîne de caractères — est la taille du plus petit algorithme (dans un certain langage de programmation fixé) qui engendre cet objet. Elle est nommée d'après le mathématicien Andreï Kolmogorov, qui publia sur le sujet dès 1963. Elle est aussi parfois nommée complexité de Kolmogorov-Solomonoff.