Concept

Filtered category

In , filtered categories generalize the notion of directed set understood as a category (hence called a directed category; while some use directed category as a synonym for a filtered category). There is a dual notion of cofiltered category, which will be recalled below. A is filtered when it is not empty, for every two objects and in there exists an object and two arrows and in , for every two parallel arrows in , there exists an object and an arrow such that . A filtered colimit is a colimit of a functor where is a filtered category. A category is cofiltered if the is filtered. In detail, a category is cofiltered when it is not empty, for every two objects and in there exists an object and two arrows and in , for every two parallel arrows in , there exists an object and an arrow such that . A cofiltered limit is a of a functor where is a cofiltered category. Given a , a of sets that is a small filtered colimit of representable presheaves, is called an ind-object of the category . Ind-objects of a category form a full subcategory in the category of functors (presheaves) . The category of pro-objects in is the opposite of the category of ind-objects in the opposite category . There is a variant of "filtered category" known as a "κ-filtered category", defined as follows. This begins with the following observation: the three conditions in the definition of filtered category above say respectively that there exists a over any diagram in of the form , , or . The existence of cocones for these three shapes of diagrams turns out to imply that cocones exist for any finite diagram; in other words, a category is filtered (according to the above definition) if and only if there is a cocone over any finite diagram . Extending this, given a regular cardinal κ, a category is defined to be κ-filtered if there is a cocone over every diagram in of cardinality smaller than κ. (A small is of cardinality κ if the morphism set of its domain is of cardinality κ.) A κ-filtered colimit is a colimit of a functor where is a κ-filtered category.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.