Concept

Agda (programming language)

Concepts associés (13)
Type dépendant
En Informatique et en Logique, un type dépendant est un type qui peut dépendre d'une valeur définie dans le langage typé. Les langages Agda et Gallina (de l'assistant de preuve Coq) sont des exemples de langages à type dépendant. Les types dépendants permettent par exemple de définir le type des listes à n éléments. Voici un exemple en Coq. Inductive Vect (A: Type): nat -> Type := | nil: Vect A 0 | cons (n: nat) (x: A) (t: Vect A n): Vect A (S n).
Haskell
Haskell est un langage de programmation fonctionnel fondé sur le lambda-calcul et la logique combinatoire. Son nom vient du mathématicien et logicien Haskell Curry. Il a été créé en 1990 par un comité de chercheurs en théorie des langages intéressés par les langages fonctionnels et l'évaluation paresseuse. Le dernier standard est Haskell 2010 : c'est une version minimale et portable du langage conçue à des fins pédagogiques et pratiques, dans un souci d'interopérabilité entre les implémentations du langage et comme base de futures extensions.
Idris (programming language)
Idris is a purely-functional programming language with dependent types, optional lazy evaluation, and features such as a totality checker. Idris may be used as a proof assistant, but is designed to be a general-purpose programming language similar to Haskell. The Idris type system is similar to Agda's, and proofs are similar to Coq's, including tactics (theorem proving functions/procedures) via elaborator reflection. Compared to Agda and Coq, Idris prioritizes management of side effects and support for embedded domain-specific languages.
Epigram (programming language)
Epigram is a functional programming language with dependent types, and the integrated development environment (IDE) usually packaged with the language. Epigram's type system is strong enough to express program specifications. The goal is to support a smooth transition from ordinary programming to integrated programs and proofs whose correctness can be checked and certified by the compiler. Epigram exploits the Curry–Howard correspondence, also termed the propositions as types principle, and is based on intuitionistic type theory.
Total functional programming
Total functional programming (also known as strong functional programming, to be contrasted with ordinary, or weak functional programming) is a programming paradigm that restricts the range of programs to those that are provably terminating. Termination is guaranteed by the following restrictions: A restricted form of recursion, which operates only upon 'reduced' forms of its arguments, such as Walther recursion, substructural recursion, or "strongly normalizing" as proven by abstract interpretation of code.
Intuitionistic type theory
Intuitionistic type theory (also known as constructive type theory, or Martin-Löf type theory) is a type theory and an alternative foundation of mathematics. Intuitionistic type theory was created by Per Martin-Löf, a Swedish mathematician and philosopher, who first published it in 1972. There are multiple versions of the type theory: Martin-Löf proposed both intensional and extensional variants of the theory and early impredicative versions, shown to be inconsistent by Girard's paradox, gave way to predicative versions.
Assistant de preuve
En informatique (ou en mathématiques assistées par informatique), un assistant de preuve est un logiciel permettant la vérification de preuves mathématiques, soit sur des théorèmes au sens usuel des mathématiques, soit sur des assertions relatives à l'exécution de programmes informatiques. Beaucoup de projets ont été lancés pour formaliser les mathématiques, en 1966, Nicolaas de Bruijn lance le projet Automath, suivi par d'autres projets.
Théorie des types
En mathématiques, logique et informatique, une théorie des types est une classe de systèmes formels, dont certains peuvent servir d'alternatives à la théorie des ensembles comme fondation des mathématiques. Ils ont été historiquement introduits pour résoudre le paradoxe d'un axiome de compréhension non restreint. En théorie des types, il existe des types de base et des constructeurs (comme celui des fonctions ou encore celui du produit cartésien) qui permettent de créer de nouveaux types à partir de types préexistant.
Coq (logiciel)
Coq est un assistant de preuve utilisant le langage Gallina, développé par l'équipe PI.R2 de l’Inria au sein du laboratoire PPS du CNRS et en partenariat avec l'École polytechnique, le CNAM, l'Université Paris Diderot et l'Université Paris-Sud (et antérieurement l'École normale supérieure de Lyon). Le nom du logiciel (initialement CoC) est particulièrement adéquat car : il est français ; il est fondé sur le calcul des constructions (CoC abrégé en anglais) introduit par Thierry Coquand.
Type algébrique de données
Un type algébrique est une forme de type de données composite, qui combine les fonctionnalités des types produits (n‐uplets ou enregistrements) et des types sommes (union disjointe). Combinée à la récursivité, elle permet d’exprimer les données structurées telles que les listes et les arbres. Le type produit de deux types A et B est l’analogue en théorie des types du produit cartésien ensembliste et est noté A × B. C’est le type des couples dont la première composante est de type A et la seconde de type B.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.