In mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory — indeed in any area where fields appear prominently.
Suppose that E/F is a field extension. Then E may be considered as a vector space over F (the field of scalars). The dimension of this vector space is called the degree of the field extension, and it is denoted by [E:F].
The degree may be finite or infinite, the field being called a finite extension or infinite extension accordingly. An extension E/F is also sometimes said to be simply finite if it is a finite extension; this should not be confused with the fields themselves being finite fields (fields with finitely many elements).
The degree should not be confused with the transcendence degree of a field; for example, the field Q(X) of rational functions has infinite degree over Q, but transcendence degree only equal to 1.
Given three fields arranged in a tower, say K a subfield of L which is in turn a subfield of M, there is a simple relation between the degrees of the three extensions L/K, M/L and M/K:
In other words, the degree going from the "bottom" to the "top" field is just the product of the degrees going from the "bottom" to the "middle" and then from the "middle" to the "top". It is quite analogous to Lagrange's theorem in group theory, which relates the order of a group to the order and index of a subgroup — indeed Galois theory shows that this analogy is more than just a coincidence.
The formula holds for both finite and infinite degree extensions. In the infinite case, the product is interpreted in the sense of products of cardinal numbers. In particular, this means that if M/K is finite, then both M/L and L/K are finite.
If M/K is finite, then the formula imposes strong restrictions on the kinds of fields that can occur between M and K, via simple arithmetical considerations.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course introduces students with current broad research directions in electrical engineering, via a series of weekly wide-audience seminars given by distinguished speakers. The students practice t
This course introduces students with current broad research directions in electrical engineering, via a series of weekly wide-audience seminars given by distinguished speakers. The students practice t
P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic
En mathématiques et plus précisément en algèbre commutative, le théorème fondamental de la théorie de Galois établit une correspondance entre les extensions intermédiaires d'une extension finie de corps et leurs groupes de Galois, dès lors que l'extension est galoisienne, c’est-à-dire séparable et normale. Soient L une extension galoisienne finie de K et G son groupe de Galois. Pour tout sous-groupe H de G, on note LH le sous-corps de L constitué des éléments fixés par chaque élément de H.
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
En mathématiques, un corps de fonctions est un corps commutatif F de type fini sur un corps de base K. On le note habituellement F/K, ou, si le contexte est clair, seulement F. De façon équivalente un corps de fonctions « à n variables » est une extension finie F d'un corps K(t, ... , t) de fractions rationnelles à n indéterminées. F est alors de degré de transcendance n sur K. Une extension L de k est un corps de fonctions (à n variables) si et seulement si c'est le d'une variété algébrique intègre sur k (de dimension n).
Based on a field survey on the conflicts regarding the extension of the Ecole Hôtelière de Lausanne, this text discusses the production of public space. These controversies make possible an understanding of the production process of peri-urban space in ter ...
2022
L’extension de l’établissement scolaire du Belvédère à Lausanne, réalisée par le bureau butikofer de oliveira architectes, inscrit un plein – un cube aux yeux grand ouverts – dans un site en pente d’une grande beauté, mais aussi d’une grande complexité. Dé ...
2024
Robotization and industrial automation are important fields of research and development in engineering. At micro scales, industrial automation development requires specific tools to handle components and perform precise assembly, etc. Therefore, the develo ...