COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
MATH-449: BiostatisticsThis course covers statistical methods that are widely used in medicine and biology. A key topic is the analysis of longitudinal data: that is, methods to evaluate exposures, effects and outcomes that
PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
EE-566: Adaptation and learningIn this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
CS-433: Machine learningMachine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
MATH-562: Statistical inferenceInference from the particular to the general based on probability models is central to the statistical method. This course gives a graduate-level account of the main ideas of statistical inference.