En mathématiques, en particulier dans la théorie des ensembles, deux ensembles ordonnés X et Y sont dits avoir le même type d'ordre s'ils sont isomorphes pour l'ordre, c'est-à-dire, s'il existe une bijection f: X → Y telle que f et son inverse soient strictement croissantes (c'est-à-dire préservent l'ordre). Dans le cas particulier où X est totalement ordonnée, la monotonie de f implique la monotonie de son inverse.
Par exemple, l'ensemble des entiers et l'ensemble des nombres entiers pairs ont le même type d'ordre, parce que la correspondance et sa réciproque préservent toutes deux l'ordre. Mais l'ensemble des entiers et l'ensemble des nombres rationnels (muni de l'ordre usuel) ne sont pas isomorphes pour l'ordre, parce que, même si les ensembles ont le même cardinal (ils sont tous les deux infinis dénombrables), il n'existe pas de bijection préservant l'ordre. À ces deux types d'ordre on peut en ajouter d'autres, comme celui de l'ensemble des nombres entiers positifs (qui a un plus petit élément), et celui des nombres entiers négatifs (qui a un plus grand élément). Les demi-intervalles fermés [0,1) et (0,1] et l'intervalle fermé [0,1] sont trois autres exemples de types d'ordre, différents des premiers cités. Au contraire, l'intervalle ouvert ]0,1[ des rationnels a le même type d'ordre que les rationnels (puisque, par exemple, fournit une bijection strictement croissante).
Comme la relation 'avoir le même type d'ordre' est une relation d'équivalence, elle partitionne la classe de tous les ensembles ordonnés dans des classes d'équivalence.
Chaque ensemble bien ordonné est équivalent pour l'ordre à exactement un nombre ordinal (voir la définition de John von Neumann des ordinaux). Les nombres ordinaux sont des représentants canoniques de leurs classes d'équivalence, et donc le type d'ordre d'un ensemble ordonné est généralement identifié par l'ordinal correspondant. Par exemple, le type d'ordre des nombres naturels est ω.
Le type d'ordre d'un ensemble bien ordonné V est parfois noté ord(V).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
vignette|Spirale représentant les nombres ordinaux inférieurs à ωω. En mathématiques, on appelle nombre ordinal un objet permettant de caractériser le type d'ordre d'un ensemble bien ordonné quelconque, tout comme en linguistique, les mots premier, deuxième, troisième, quatrième, etc. s'appellent des adjectifs numéraux ordinaux, et servent à préciser le rang d'un objet dans une collection, ou l'ordre d'un événement dans une succession.
En mathématiques, le paradoxe de Burali-Forti, paru en 1897, désigne une construction qui conduit dans certaines théories des ensembles ou théories des types trop naïves à une antinomie, c’est-à-dire que la théorie est contradictoire (on dit aussi incohérente ou inconsistante). Dit brièvement, il énonce que, comme on peut définir la borne supérieure d'un ensemble d'ordinaux, si l'ensemble de tous les ordinaux existe, on peut définir un ordinal supérieur strictement à tous les ordinaux, d'où une contradiction.
vignette|upright=1.2|Fractions rationnelles dyadiques dans l'intervalle de 0 à 1|alt=Intervalle unité subdivisé en 1/128 èmes En mathématiques, une fraction dyadique ou rationnel dyadique est un nombre rationnel qui peut s'écrire sous forme de fraction avec pour dénominateur une puissance de deux. On peut noter l'ensemble des nombres dyadiques formellement par Par exemple, 1/2 ou 3/8 sont des fractions dyadiques, mais pas 1/3.
The student will learn state-of-the-art algorithms for solving differential equations. The analysis and implementation of these algorithms will be discussed in some detail.
This course focuses on the physical mechanisms at the origin of the transition of a flow from laminar to turbulent using the hydrodynamic instability theory.
In this paper, we prove several extremal results for geometrically defined hypergraphs. In particular, we establish an improved lower bound, single exponentially decreasing in k, on the best constant delta > 0 such that the vertex classes P-1,...,P-k of ev ...
Society for Industrial and Applied Mathematics2016
We consider sets L = {l(1),..., l(n)} of n labeled lines in general position in R-3, and study the order types of point sets {p(1),..., p(n)} that stem from the intersections of the lines in L with (directed) planes Pi, not parallel to any line of L, that ...
Time-sensitive networks provide worst-case guarantees for applications in domains such as the automobile, automation, avionics, and the space industries. A violation of these guarantees can cause considerable financial loss and serious damage to human live ...