Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les modèles d'estimation statistique, les estimateurs de ML, les machines d'apprentissage, les problèmes pratiques et les défis de l'estimation.
Explore les méthodes d'optimisation, y compris la convexité, la descente en gradient et la minimisation non convexe, avec des exemples comme l'estimation de la probabilité maximale et la régression des crêtes.
Couvre les bases de régression linéaire, en se concentrant sur la minimisation des erreurs en utilisant le principe des moindres carrés et comprend une table ANOVA et un exemple pratique dans R.
Explore la régression linéaire à travers les moindres carrés et les équations normales, en soulignant l'importance de minimiser les erreurs pour des prédictions précises.
Explore les modèles linéaires, les surajustements et l'importance de l'expansion des fonctionnalités et ajoute plus de données pour réduire les surajustements.
Couvre la méthodologie Box-Jenkins pour construire des modèles de séries chronologiques, y compris l'identification des modèles, les calculs de variance et le diagnostic des modèles.