Diagramme commutatifEn mathématiques, et plus spécialement dans les applications de la théorie des catégories, un diagramme commutatif est un diagramme d'objets et de morphismes tels que, si l'on suit à travers le diagramme un chemin d'un objet à un autre, le résultat par composition des morphismes ne dépend que de l'objet de départ et de l'objet d'arrivée. Cette définition peut être visualisée par le dessin élémentaire ci-contre. On se place dans la catégorie Ens. Les objets sont les ensembles A, B et C en réalité tous égaux ici à {1,2,3,4}.
MorphismeEn mathématiques, le morphisme est la relative similitude d'objets mathématiques considérés du point de vue de ce qu'ils partagent comme entités ou par leurs relations. En algèbre générale, un morphisme (ou homomorphisme) est une application entre deux structures algébriques de même espèce, c'est-à-dire des ensembles munis de lois de composition interne ou externe (par exemple deux groupes ou deux espaces vectoriels), qui respectent certaines propriétés en passant d'une structure à l'autre.
Localisation (mathématiques)En algèbre, la localisation est une des opérations de base de l'algèbre commutative. C'est une méthode qui construit à partir d'un anneau commutatif un nouvel anneau. La construction du corps des fractions est un cas particulier de la localisation. La localisation consiste à rendre inversibles les éléments d'une partie (« partie multiplicative ») de l'anneau. L'exemple le plus connu est le corps des fractions d'un anneau intègre qui se construit en rendant inversibles tous les éléments non nuls de l'anneau.
Algèbre commutativevignette|Propriété universelle du produit tensoriel de deux anneaux commutatifs En algèbre générale, l’algèbre commutative est la branche des mathématiques qui étudie les anneaux commutatifs, leurs idéaux, les modules et les algèbres. Elle est fondamentale pour la géométrie algébrique et pour la théorie algébrique des nombres. David Hilbert est considéré comme le véritable fondateur de cette discipline appelée initialement la « théorie des idéaux ».