vignette|Formules mathématiques
Les mathématiques pures (ou mathématiques fondamentales) regroupent les activités de recherche en mathématiques motivée par des raisons autres que celles de l'application pratique.
Les mathématiques pures reposent sur un ensemble d'axiomes et sur un système logique, détachés de l'expérience et de la réalité. Il n'est cependant pas rare que des théories développées sans objectif pratique soient utilisées plus tard pour certaines applications, comme la géométrie riemannienne pour la relativité générale.
Les mathématiciens de la Grèce antique ont été parmi les premiers à faire une distinction entre les mathématiques pures et appliquées.
Platon a contribué à l'écart entre l'« arithmétique », et la « logistique », maintenant appelée arithmétique. Platon considérait la logistique (arithmétique) comme appropriée pour les hommes d'affaires et les hommes de guerre qui « doivent apprendre l'art des nombres ou [ils] ne sauront pas comment arranger [leurs] troupes » et l'arithmétique comme appropriée aux philosophes.
Apollonios de Perga a fait valoir, dans la préface du cinquième livre des Coniques, que les sujets d'un de ceux-ci « ... semblent digne d'être étudiés pour eux-mêmes ».
Le terme lui-même est inscrit dans le titre complet de la chaire sadleirienne, fondée au milieu du . L'idée de faire des mathématiques pures une discipline à part entière pourrait avoir émergé à cette époque. La génération de Gauss ne fait aucune distinction radicale entre les mathématiques pures et appliquées.
Au début du , les mathématiciens ont utilisé la méthode axiomatique, fortement influencée par David Hilbert. La formulation logique des mathématiques pures suggérée par Bertrand Russell semblait de plus en plus plausible, puisque de grandes parties des mathématiques se sont axiomatisée et se sont donc soumis à des critères de démonstration rigoureuse.
En fait, dans un cadre axiomatique, le rigoureux n'ajoute rien à l'idée de démonstration. Les mathématiques pures, selon un point de vue qui peut être attribué au collectif Bourbaki, est ce qui est démontré.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
Multivariate statistics focusses on inferring the joint distributional properties of several random variables, seen as random vectors, with a main focus on uncovering their underlying dependence struc
In this thesis, we concentrate on advancing high-level behavioral control policies for robotic systems within the framework of Dynamical Systems (DS). Throughout the course of this research, a unifying thread weaving through diverse fields emerges, and tha ...
EPFL2024
The reason why, unlike the West, Boris Hessen's achievements were virtually forgotten in the USSR even after his rehabilitation (1956), was that in the Soviet context his ideas concerning Isaac Newton lost the polemical sting they possessed when first form ...
2022
Numerous process integration techniques were proved to be highly effective for identifying and estimating potential energy savings in the industry. However, they require high time and effort to collect and analyse process data. As a result, they do not con ...
Couvre les méthodes d'optimisation, les garanties de convergence, les compromis et les techniques de réduction de la variance en optimisation numérique.
Explore la méthode Extra-Gradient pour l'optimisation Primal-dual, couvrant les problèmes non convexes, les taux de convergence et les performances pratiques.
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
vignette|280px|En théorie des graphes, principales topologies typiques de graphes. Les mathématiques appliquées sont une branche des mathématiques qui s'intéresse à l'application du savoir mathématique aux autres domaines.