Concept

Covariant formulation of classical electromagnetism

Concepts associés (17)
Action de Proca
En physique, plus précisément en théorie des champs en physique des particules, l’action de Proca décrit un champ massif de spin-1 dans l'espace-temps de Minkowski. L'équation du mouvement associée est une équation d'onde relativiste appelée l'équation de Proca. L'action et l'équation de Proca sont nommés d'après le physicien franco-roumain Alexandru Proca. L'équation de Proca apparaît dans le modèle Standard dans lequel elle décrit les bosons de jauge massifs, c'est-à-dire les bosons Z et W.
Champ (physique)
En physique, un champ est la donnée, pour chaque point de l'espace-temps, de la valeur d'une grandeur physique. Cette grandeur physique peut être scalaire (température, pression...), vectorielle (vitesse des particules d'un fluide, champ électrique...) ou tensorielle (comme le tenseur de Ricci en relativité générale). Un exemple de champ scalaire est donné par la carte des températures d'un bulletin météorologique télévisé : la température atmosphérique prend, en chaque point, une valeur particulière.
Relativistic electromagnetism
Relativistic electromagnetism is a physical phenomenon explained in electromagnetic field theory due to Coulomb's law and Lorentz transformations. After Maxwell proposed the differential equation model of the electromagnetic field in 1873, the mechanism of action of fields came into question, for instance in the Kelvin’s master class held at Johns Hopkins University in 1884 and commemorated a century later. The requirement that the equations remain consistent when viewed from various moving observers led to special relativity, a geometric theory of 4-space where intermediation is by light and radiation.
Electromagnetic stress–energy tensor
In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions. In free space and flat space–time, the electromagnetic stress–energy tensor in SI units is where is the electromagnetic tensor and where is the Minkowski metric tensor of metric signature (− + + +).
Mathematical descriptions of the electromagnetic field
There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking. Classical electromagnetism The most common description of the electromagnetic field uses two three-dimensional vector fields called the electric field and the magnetic field.
Tenseur des contraintes de Maxwell
Le tenseur des contraintes de Maxwell (nommé en l'honneur de James Clerk Maxwell) est un tenseur de rang 2 utilisé en électromagnétisme classique pour exprimer dans le cas général les forces électromagnétiques. Dans la situation physique la plus simple, constituée d'une charge ponctuelle se déplaçant librement dans un champ magnétique uniforme, on peut calculer aisément la force exercée sur la particule en utilisant la loi de la force de Lorentz.
Maxwell's equations in curved spacetime
In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime (where the metric may not be the Minkowski metric) or where one uses an arbitrary (not necessarily Cartesian) coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime.
Transformations de Lorentz du champ électromagnétique
Les transformations de Lorentz du champ électromagnétique permettent de déterminer ce que devient le couple champ électrique - magnétique quand on passe d'un référentiel inertiel à un autre sans avoir à résoudre (à nouveau) les équations de Maxwell pour les déterminer. Les mesures réalisées par un observateur dépendent du référentiel depuis lequel elles sont réalisées. Par exemple, la vitesse d'un corps varie suivant le référentiel dans lequel on la mesure : la vitesse d'un bateau mesurée par rapport à la berge est différente de celle mesurée par rapport à l'eau du fleuve dans lequel il se déplace.
Tenseur électromagnétique
Le tenseur électromagnétique, ou tenseur de Maxwell est le nom de l'objet mathématique décrivant la structure du champ électromagnétique en un point donné. Le tenseur électromagnétique est aussi connu comme : le tenseur d'intensité du champ électromagnétique ; le tenseur du champ magnétique ; le tenseur de Maxwell ; le tenseur de Faraday. Ce tenseur est défini dans le cadre du formalisme mathématique de la relativité restreinte, où aux trois dimensions spatiales est adjointe une dimension temporelle.
Inhomogeneous electromagnetic wave equation
In electromagnetism and applications, an inhomogeneous electromagnetic wave equation, or nonhomogeneous electromagnetic wave equation, is one of a set of wave equations describing the propagation of electromagnetic waves generated by nonzero source charges and currents. The source terms in the wave equations make the partial differential equations inhomogeneous, if the source terms are zero the equations reduce to the homogeneous electromagnetic wave equations. The equations follow from Maxwell's equations.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.