Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'algorithme de maximisation des attentes et les techniques de regroupement, en mettant l'accent sur l'échantillonnage Gibbs et l'équilibre détaillé.
Couvre le processus de formation d'un réseau neuronal, y compris l'avancement, la fonction de coût, la vérification des gradients et la visualisation des couches cachées.
S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.
Explore les réseaux neuronaux artificiels, les informations sur les récompenses dans le cerveau, le conditionnement animal, l'apprentissage par renforcement profond et un quiz sur les récompenses.
Explore le passage à l'apprentissage par renforcement profond à travers les réseaux neuronaux pour l'apprentissage direct des politiques, en contournant les valeurs Q et V.
Explore l'application de modèles générateurs profonds dans la découverte de médicaments, en mettant l'accent sur la conception de petites molécules et l'optimisation des structures moléculaires.