PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
PHYS-512: Statistical physics of computationThe students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
COM-502: Dynamical system theory for engineersLinear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the quali
MATH-251(a): Numerical analysisThis course presents numerical methods for the solution of mathematical problems such as systems of linear and non-linear equations, functions approximation, integration and differentiation, and diffe
MATH-124: Geometry for architects ICe cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
MATH-410: Riemann surfacesThis course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
BIO-341: Dynamical systems in biologyLife is non-linear. This course introduces dynamical systems as a technique for modelling simple biological processes. The emphasis is on the qualitative and numerical analysis of non-linear dynamical
MATH-302: Functional analysis IConcepts de base de l'analyse fonctionnelle linéaire: opérateurs bornés, opérateurs compacts, théorie spectrale pour les opérateurs symétriques et compacts, le théorème de Hahn-Banach, les théorèmes d
MATH-612: Irregular transport and mixingWe will present the theory of PDEs and of transport equations with rough (non Lipschitz) velocity fields, address both the renormalisation theory by DiPerna-Lions-Ambrosio and its quantitative Lagrang