Résumé
Un nombre positif est un nombre qui est supérieur à zéro, par exemple 3 ou e. En dehors des textes mathématiques, lorsqu'on parle de nombres positifs ou négatifs, le nombre zéro est généralement exclu. Ainsi le dictionnaire Lexis précise : . L'Académie française, dans la neuvième édition de son dictionnaire précise quant à elle qu'un nombre positif est un nombre . En français, le nombre zéro est considéré tantôt comme étant à la fois positif et négatif, tantôt comme n'étant ni positif, ni négatif. Les paragraphes ci-dessous résument la situation par pays. Mais l'usage dans les autres langues adhère en général à la deuxième convention. Ainsi, l'anglais positive et l'allemand positiv excluent zéro, tandis que nonnegative et nichtnegativ incluent zéro. En mathématiques, l'adjectif supérieur est compris au sens large : tout nombre (réel) est supérieur (et aussi inférieur) à lui-même. En particulier, zéro est positif. Nicolas Bourbaki souligne : . Cet usage est relativement récent. Ainsi, dans l'ouvrage français d'enseignement supérieur Leçons d'Algèbre Moderne (1964) de Lentin et Rivaud, on lit à la page 70: . Les programmes de Terminale C de 1962 parlent encore d'. Les manuels écrits pour le programme de Terminale C de 1966 entré en vigueur en 1967 semblent également observer l'ancienne convention (Les structures fondamentales, Doneddu, p. 139; Algèbre et analyse, Lebossé et Hémery, p. 75). Mais la transition vers la nouvelle convention s'amorce avec le programme de Terminale de 1971 entré en vigueur en 1972, qui parle de , même s'il parle par ailleurs de dérivée . Compte tenu de la coexistence de deux conventions contradictoires en français, les expressions nombre positif ou nul et nombre strictement positif permettent d'éviter toute ambigüité. Le manuel de 6e secondaire CQFD (6 périodes par semaine, 2019) des auteurs Annove, Gilon, Van Eerdenbrugghe et Wilemme adhère à la nouvelle terminologie en vigueur en France en parlant de , par exemple à la page 54. En Suisse francophone, on considère en général le nombre zéro comme n'étant ni positif ni négatif.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
CS-308: Introduction to quantum computation
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
MATH-101(e): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-502: Distribution and interpolation spaces
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
Afficher plus
Publications associées (32)
Concepts associés (16)
Groupe classique
En mathématiques, les groupes classiques sont différentes familles de groupes de transformations liées à l'algèbre linéaire, principalement les groupes linéaires, orthogonaux, symplectiques et unitaires. Ces groupes peuvent aussi être présentés comme groupes de matrices inversibles, et des quotients de ceux-ci. Les groupes matrices carrées d'ordre n (GL(n, R)), GL(n, C)), le groupe des matrices orthogonales d'ordre n (O(n)) et le groupe des matrices unitaires d'ordre n (U(n)) sont des exemples explicites de groupes classiques.
Produit direct (groupes)
En mathématiques, et plus particulièrement en théorie des groupes, le produit direct d'une famille de groupes est une structure de groupe qui se définit naturellement sur le produit cartésien des ensembles sous-jacents à ces groupes. Soient et deux groupes. Désignons par leur produit cartésien (ou, plus exactement, le produit cartésien de leurs ensembles sous-jacents). Il est naturel de définir sur une loi de composition composante par composante : le produit apparaissant dans le second membre étant calculé dans et le produit dans .
Log semiring
In mathematics, in the field of tropical analysis, the log semiring is the semiring structure on the logarithmic scale, obtained by considering the extended real numbers as logarithms. That is, the operations of addition and multiplication are defined by conjugation: exponentiate the real numbers, obtaining a positive (or zero) number, add or multiply these numbers with the ordinary algebraic operations on real numbers, and then take the logarithm to reverse the initial exponentiation. Such operations are also known as, e.
Afficher plus