Mécanique analytiqueLa mécanique analytique est une formulation de la mécanique classique basée sur le calcul variationnel. La mécanique analytique s'est avérée un outil très important en physique théorique. En particulier, la mécanique quantique emprunte énormément au formalisme de la mécanique analytique. Contrairement à la mécanique d'Isaac Newton qui s'appuie sur le concept de point matériel, la mécanique analytique se penche sur les systèmes arbitrairement complexes, et étudie l'évolution de leurs degrés de libertés dans ce qu'on appelle un espace de configuration.
Transformation canoniqueEn mécanique hamiltonienne, une transformation canonique est un changement des coordonnées canoniques (q, p, t) → (Q, P, t) qui conserve la forme des équations de Hamilton, sans pour autant nécessairement conserver le Hamiltonien en lui-même. Les transformations canoniques sont utiles pour les équations de Hamilton-Jacobi (une technique utile pour calculer les quantités conservées) et le théorème de Liouville (à la base de la mécanique statistique classique).
Conserved quantityA conserved quantity is a property or value that remains constant over time in a system even while changes occur in the system. In mathematics, a conserved quantity of a dynamical system is formally defined as a function of the dependent variables, the value of which remains constant along each trajectory of the system. Not all systems have conserved quantities, and conserved quantities are not unique, since one can always produce another such quantity by applying a suitable function, such as adding a constant, to a conserved quantity.
Hamiltonian opticsHamiltonian optics and Lagrangian optics are two formulations of geometrical optics which share much of the mathematical formalism with Hamiltonian mechanics and Lagrangian mechanics. Hamilton's principle In physics, Hamilton's principle states that the evolution of a system described by generalized coordinates between two specified states at two specified parameters σA and σB is a stationary point (a point where the variation is zero) of the action functional, or where and is the Lagrangian.
Pendule (physique)En physique, le pendule est un système oscillant qui, écarté de sa position d'équilibre, y retourne en décrivant des oscillations, sous l'effet d'une force, par exemple le poids d'une masse. Le mot pendule (nom masculin), dû à Huygens, vient du latin pendere. Le pendule de Foucault est l'un des plus connus. Par ailleurs, le mot « pendule » est souvent utilisé en synonyme de « pendule simple », même si son mouvement n'est plus « pendulaire » (on parle ainsi de pendule conique).
Force d'inertieUne force d'inertie, ou inertielle, ou force fictive, ou pseudo-force est une force apparente qui agit sur les masses lorsqu'elles sont observées à partir d'un référentiel non inertiel, autrement dit depuis un point de vue en mouvement accéléré (en translation ou en rotation). La force d'inertie est donc une résistance opposée au mouvement par un corps, grâce à sa masse. L'équation fondamentale de la dynamique, dans la formulation initiale donnée par Newton, est valable uniquement dans des référentiels inertiels (dits aussi galiléens).