Concepts associés (16)
Bruit numérique
Dans une , on appelle bruit numérique toute fluctuation parasite ou dégradation que subit l'image de l'instant de son acquisition jusqu'à son enregistrement. Le bruit numérique est une notion générale à tout type d'image numérique, et ce quel que soit le type du capteur à l'origine de son acquisition (appareil photo numérique, scanner, caméra thermique...etc). Les sources de bruit numérique sont multiples, certaines sont physiques liées à la qualité de l’éclairage, de la scène, la température du capteur, la stabilité du capteur de l'image durant l'acquisition, d'autres apparaissent durant la numérisation de l'information.
Apprentissage profond
L'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Réseau neuronal convolutif
En apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Filtre de Wiener
Le filtre de Wiener est un filtre utilisé pour estimer la valeur désirée d'un signal bruité. Le filtre de Wiener minimise l'erreur quadratique moyenne entre le processus aléatoire estimé et le processus souhaité. Norbert Wiener a d'abord proposé le filtre dans les années 1940, puis publié en 1949. Vers la même époque Andreï Kolmogorov travaillait sur des filtres similaires. Le filtre de Wiener a une variété d'applications de traitement du signal, traitement d'image, des systèmes de contrôle et de la communication numérique.
Inpainting
thumb|upright=1.3|Restauration d'une photographie ancienne détériorée. L'inpainting est le nom donné à la technique de reconstruction d'images détériorées ou de remplissage des parties manquantes d'une image. Elle peut être pratiquée de manière manuelle, avec des techniques similaires à celles de la restauration d'anciens tableaux ou de photographies (retouche ou réintégration colorée), ou bien avec un ordinateur, avec ou sans interaction de l'utilisateur.
Bruit gaussien
En traitement du signal, un bruit gaussien est un bruit dont la densité de probabilité est une distribution gaussienne (loi normale). L'adjectif gaussien fait référence au mathématicien, astronome et physicien allemand Carl Friedrich Gauss. La densité de probabilité d'une variable aléatoire gaussienne est la fonction : où représente le niveau de gris, la valeur de gris moyenne et son écart type. Un cas particulier est le bruit blanc gaussien, dans lequel les valeurs à toute paire de temps sont identiquement distribuées et statistiquement indépendantes (et donc ).
Filtre médian
Le filtre médian est un filtre numérique non linéaire, souvent utilisé pour la réduction de bruit. La réduction de bruit est une étape de prétraitement classique visant à améliorer les résultats de traitements futurs (détection de bords par exemple). La technique de filtre médian est largement utilisée en numériques car il permet sous certaines conditions de réduire le bruit tout en conservant les contours de l'image. L'idée principale du filtre médian est de remplacer chaque entrée par la valeur médiane de son voisinage.
Noise (signal processing)
In signal processing, noise is a general term for unwanted (and, in general, unknown) modifications that a signal may suffer during capture, storage, transmission, processing, or conversion. Sometimes the word is also used to mean signals that are random (unpredictable) and carry no useful information; even if they are not interfering with other signals or may have been introduced intentionally, as in comfort noise. Noise reduction, the recovery of the original signal from the noise-corrupted one, is a very common goal in the design of signal processing systems, especially filters.
Bruit de mesure
En métrologie, le bruit de mesure est l'ensemble des signaux parasites qui se superposent au signal que l'on cherche à obtenir au moyen d'une mesure d'un phénomène physique. Ces signaux sont une gêne pour la compréhension de l'information que le signal transporte. La métrologie vise donc notamment à connaître leurs origines et à les caractériser, afin de les éliminer et d'obtenir le signal d'origine aussi distinctement que possible. La source du bruit d'origine externe est externe au système physique générant le signal utile et agit par influence sur celui-ci.
Réduction de la dimensionnalité
vignette|320x320px|Animation présentant la projection de points en deux dimensions sur les axes obtenus par analyse en composantes principales, une méthode populaire de réduction de la dimensionnalité La réduction de la dimensionnalité (ou réduction de (la) dimension) est un processus étudié en mathématiques et en informatique, qui consiste à prendre des données dans un espace de grande dimension, et à les remplacer par des données dans un espace de plus petite dimension.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.