Résumé
In signal processing, the Wiener filter is a filter used to produce an estimate of a desired or target random process by linear time-invariant (LTI) filtering of an observed noisy process, assuming known stationary signal and noise spectra, and additive noise. The Wiener filter minimizes the mean square error between the estimated random process and the desired process. The goal of the Wiener filter is to compute a statistical estimate of an unknown signal using a related signal as an input and filtering that known signal to produce the estimate as an output. For example, the known signal might consist of an unknown signal of interest that has been corrupted by additive noise. The Wiener filter can be used to filter out the noise from the corrupted signal to provide an estimate of the underlying signal of interest. The Wiener filter is based on a statistical approach, and a more statistical account of the theory is given in the minimum mean square error (MMSE) estimator article. Typical deterministic filters are designed for a desired frequency response. However, the design of the Wiener filter takes a different approach. One is assumed to have knowledge of the spectral properties of the original signal and the noise, and one seeks the linear time-invariant filter whose output would come as close to the original signal as possible. Wiener filters are characterized by the following: Assumption: signal and (additive) noise are stationary linear stochastic processes with known spectral characteristics or known autocorrelation and cross-correlation Requirement: the filter must be physically realizable/causal (this requirement can be dropped, resulting in a non-causal solution) Performance criterion: minimum mean-square error (MMSE) This filter is frequently used in the process of deconvolution; for this application, see Wiener deconvolution. Let be an unknown signal which must be estimated from a measurement signal . Where alpha is a tunable parameter. is known as prediction, is known as filtering, and is known as smoothing (see Wiener filtering chapter of for more details).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (15)
COM-300: Stochastic models in communication
L'objectif de ce cours est la maitrise des outils des processus stochastiques utiles pour un ingénieur travaillant dans les domaines des systèmes de communication, de la science des données et de l'i
MICRO-512: Image processing II
Study of advanced image processing; mathematical imaging. Development of image-processing software and prototyping in Jupyter Notebooks; application to real-world examples in industrial vision and bio
EE-350: Signal processing
Dans ce cours, nous présentons les méthodes de base du traitement des signaux.
Afficher plus
Séances de cours associées (44)
Processus stochastiques discrets du temps: filtre Wiener
Explore le filtre Wiener pour les processus stochastiques à temps discret et ses applications.
Prédiction linéaire et filtrage: Partie 2
Explore la prédiction linéaire, les coefficients de prédiction, la minimisation de l'erreur quadratique moyenne et l'algorithme de Levinson-Durbin dans le traitement du signal.
Prélèvement et filtrage des signaux
Explore l'échantillonnage des signaux, le filtrage et la représentation graphique dans le domaine des fréquences.
Afficher plus
Publications associées (125)

Removing systematics-induced 21-cm foreground residuals by cross-correlating filtered data

Tianyue Chen

Observations of the redshifted 21-cm signal emitted by neutral hydrogen represent a promising probe of large-scale structure in the universe. However, the cosmological 21-cm signal is challenging to observe due to astrophysical foregrounds which are severa ...
AMER PHYSICAL SOC2022
Afficher plus
Concepts associés (11)
Théorie de l'estimation
En statistique, la théorie de l'estimation s'intéresse à l'estimation de paramètres à partir de données empiriques mesurées ayant une composante aléatoire. Les paramètres décrivent un phénomène physique sous-jacent tel que sa valeur affecte la distribution des données mesurées. Un estimateur essaie d'approcher les paramètres inconnus à partir des mesures.
Linear prediction
Linear prediction is a mathematical operation where future values of a discrete-time signal are estimated as a linear function of previous samples. In digital signal processing, linear prediction is often called linear predictive coding (LPC) and can thus be viewed as a subset of filter theory. In system analysis, a subfield of mathematics, linear prediction can be viewed as a part of mathematical modelling or optimization. The most common representation is where is the predicted signal value, the previous observed values, with , and the predictor coefficients.
Débruitage
Le débruitage est une technique d'édition qui consiste à supprimer des éléments indésirables (« bruit »), afin de rendre un document, un signal (numérique ou analogique) ou un environnement plus intelligible ou plus pur. Ne pas confondre le débruitage avec la réduction de bruit. Sur le plan sonore, le débruitage consiste à réduire ou anéantir le rendu d'ondes sonores « parasites » (ou « bruit »).
Afficher plus