Explore les fondamentaux de la théorie de Galois, y compris les éléments séparables, les champs de décomposition et les groupes de Galois, en soulignant l'importance des extensions de degrés finis et de la structure des extensions de Galois.
Explore la différenciation sous le signe intégral et les conditions de différenciation, avec des exemples et des extensions aux fonctions à intervalles ouverts.
Explore la théorie de Rham, les valeurs L et les extensions, y compris les formules de valeur spéciale et les exemples liés aux caractères Hecke et aux formes modulaires.