Vector quantization (VQ) is a classical quantization technique from signal processing that allows the modeling of probability density functions by the distribution of prototype vectors. It was originally used for data compression. It works by dividing a large set of points (vectors) into groups having approximately the same number of points closest to them. Each group is represented by its centroid point, as in k-means and some other clustering algorithms.
The density matching property of vector quantization is powerful, especially for identifying the density of large and high-dimensional data. Since data points are represented by the index of their closest centroid, commonly occurring data have low error, and rare data high error. This is why VQ is suitable for lossy data compression. It can also be used for lossy data correction and density estimation.
Vector quantization is based on the competitive learning paradigm, so it is closely related to the self-organizing map model and to sparse coding models used in deep learning algorithms such as autoencoder.
The simplest training algorithm for vector quantization is:
Pick a sample point at random
Move the nearest quantization vector centroid towards this sample point, by a small fraction of the distance
Repeat
A more sophisticated algorithm reduces the bias in the density matching estimation, and ensures that all points are used, by including an extra sensitivity parameter :
Increase each centroid's sensitivity by a small amount
Pick a sample point at random
For each quantization vector centroid , let denote the distance of and
Find the centroid for which is the smallest
Move towards by a small fraction of the distance
Set to zero
Repeat
It is desirable to use a cooling schedule to produce convergence: see Simulated annealing. Another (simpler) method is LBG which is based on K-Means.
The algorithm can be iteratively updated with 'live' data, rather than by picking random points from a data set, but this will introduce some bias if the data are temporally correlated over many samples.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Les cartes autoadaptatives, cartes auto-organisatrices ou cartes topologiques forment une classe de réseau de neurones artificiels fondée sur des méthodes d'apprentissage non supervisées. Elles sont souvent désignées par le terme anglais self organizing maps (SOM), ou encore cartes de Kohonen du nom du statisticien ayant développé le concept en 1984. La littérature utilise aussi les dénominations : « réseau de Kohonen », « réseau autoadaptatif » ou « réseau autoorganisé ».
Le partitionnement en k-moyennes (ou k-means en anglais) est une méthode de partitionnement de données et un problème d'optimisation combinatoire. Étant donnés des points et un entier k, le problème est de diviser les points en k groupes, souvent appelés clusters, de façon à minimiser une certaine fonction. On considère la distance d'un point à la moyenne des points de son cluster ; la fonction à minimiser est la somme des carrés de ces distances.
En algorithmique et en traitement du signal, l’algorithme de Lloyd-Max est un algorithme qui permet de construire le quantifieur scalaire optimal. C'est donc une méthode pour quantifier un signal en une dimension de manière à minimiser la distorsion, mesurée par l'erreur quadratique moyenne. L'optimalité du quantifieur est assurée par deux conditions sur les niveaux de reconstruction et de décision, découvertes par Lloyd en 1957. Il fournit aussi un algorithme, qui permet de construire itérativement le quantifieur optimal.
The goal of this course is to introduce the engineering students state-of-the-art speech and audio coding techniques with an emphasis on the integration of knowledge about sound production and auditor
This course covers fundamental notions in image and video processing, as well as covers most popular tools used, such as edge detection, motion estimation, segmentation, and compression. It is compose
This course provides the students with 1) a set of theoretical concepts to understand the machine learning approach; and 2) a subset of the tools to use this approach for problems arising in mechanica
Explore les techniques de compression des modèles dans les NLP, en discutant de la taille, de la quantification, de la factorisation du poids, de la distillation des connaissances et des mécanismes d'attention.
Explore les algorithmes de consensus dans les systèmes de contrôle en réseau, couvrant des sujets tels que les modèles Metropolis-Hasting et le calcul distribué de régression des moins-quaires.
Explore la conversion analogique-numérique, l'optimisation du signal neuronal, les architectures multicanaux et les techniques de compression sur puce en neuroingénierie.
Visual Question Answering (VQA) on remote sensing imagery can help non-expert users in extracting information from Earth observation data. Current approaches follow a neural encoder-decoder design, combining convolutional and recurrent encoders together wi ...
A logconcave likelihood is as important to proper statistical inference as a convex cost function is important to variational optimization. Quantization is often disregarded when writing likelihood models, ignoring the limitations of the physical detectors ...
Point cloud representation is a popular modality to code immersive 3D contents. Several solutions and standards have been recently proposed in order to efficiently compress the large volume of data that point clouds require, in order to make them feasible ...