In mathematics, and specifically in group theory, a non-abelian group, sometimes called a non-commutative group, is a group (G, ∗) in which there exists at least one pair of elements a and b of G, such that a ∗ b ≠ b ∗ a. This class of groups contrasts with the abelian groups. (In an abelian group, all pairs of group elements commute).
Non-abelian groups are pervasive in mathematics and physics. One of the simplest examples of a non-abelian group is the dihedral group of order 6. It is the smallest finite non-abelian group. A common example from physics is the rotation group SO(3) in three dimensions (for example, rotating something 90 degrees along one axis and then 90 degrees along a different axis is not the same as doing them in reverse order).
Both discrete groups and continuous groups may be non-abelian. Most of the interesting Lie groups are non-abelian, and these play an important role in gauge theory.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
This course consists of two parts. The first part covers basic concepts of molecular symmetry and the application of group theory to describe it. The second part introduces Laplace transforms and Four
In mathematics, a topological group G is called a discrete group if there is no limit point in it (i.e., for each element in G, there is a neighborhood which only contains that element). Equivalently, the group G is discrete if and only if its identity is isolated. A subgroup H of a topological group G is a discrete subgroup if H is discrete when endowed with the subspace topology from G. In other words there is a neighbourhood of the identity in G containing no other element of H.
En théorie des groupes, on appelle centre d'un groupe G l'ensemble des éléments de G qui commutent avec tous les autres. Soit G un groupe, noté multiplicativement. Son centre Z est Dans G, Z est un sous-groupe normal — comme noyau du morphisme de groupes ι ci-dessous — et même un sous-groupe caractéristique. Tout sous-groupe de Z est sous-groupe normal de G. Z est abélien. Le centre d'un groupe abélien G est le groupe G entier, c'est-à-dire : Z = G. Le centre du groupe alterné A est trivial pour n ≥ 4.
vignette|Le Rubik's cube illustre la notion de groupes de permutations. Voir groupe du Rubik's Cube. La théorie des groupes est en mathématique, plus précisément en algèbre générale, la discipline qui étudie les structures algébriques appelées groupes. Le développement de la théorie des groupes est issu de la théorie des nombres, de la théorie des équations algébriques et de la géométrie. La théorie des groupes est étroitement liée à la théorie des représentations.
This note is motivated by a recently published paper (Biswas and Mukherjee in Commun Math Phys 322(2):373-384, 2013). We prove a no-go result for the existence of suitable solutions of the Strominger system in a compact complex parallelizable manifold . Fo ...
Springer Verlag2014
, , ,
Hellerman et al. (arXiv:1505.01537) have shown that in a generic CFT the spectrum of operators carrying a large U(1) charge can be analyzed semiclassically in an expansion in inverse powers of the charge. The key is the operator state correspondence by whi ...
Let G be a finite group and let T(G) be the abelian group of equivalence classes of endotrivial kG-modules, where k is an algebraically closed field of characteristic p. We investigate the torsion-free part TF(G) of the group T(G) and look for generators o ...