In mathematical logic, a deduction theorem is a metatheorem that justifies doing conditional proofs from a hypothesis in systems that do not explicitly axiomatize that hypothesis, i.e. to prove an implication A → B, it is sufficient to assume A as an hypothesis and then proceed to derive B. Deduction theorems exist for both propositional logic and first-order logic. The deduction theorem is an important tool in Hilbert-style deduction systems because it permits one to write more comprehensible and usually much shorter proofs than would be possible without it. In certain other formal proof systems the same conveniency is provided by an explicit inference rule; for example natural deduction calls it implication introduction.
In more detail, the propositional logic deduction theorem states that if a formula is deducible from a set of assumptions then the implication is deducible from ; in symbols, implies . In the special case where is the empty set, the deduction theorem claim can be more compactly written as: implies . The deduction theorem for predicate logic is similar, but comes with some extra constraints (that would for example be satisfied if is a closed formula). In general a deduction theorem needs to take into account all logical details of the theory under consideration, so each logical system technically needs its own deduction theorem, although the differences are usually minor.
The deduction theorem holds for all first-order theories with the usual deductive systems for first-order logic. However, there are first-order systems in which new inference rules are added for which the deduction theorem fails. Most notably, the deduction theorem fails to hold in Birkhoff–von Neumann quantum logic, because the linear subspaces of a Hilbert space form a non-distributive lattice.
"Prove" axiom 1: P→(Q→P) efn|See explanation of Notation § below.
P 1. hypothesis
Q 2. hypothesis
P 3. reiteration of 1
Q→P 4. deduction from 2 to 3
P→(Q→P) 5. deduction from 1 to 4 QED
"Prove" axiom 2:
P→(Q→R) 1. hypothesis
P→Q 2.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Branche des mathématiques en lien avec le fondement des mathématiques et l'informatique théorique. Le cours est centré sur la logique du 1er ordre et l'articulation entre syntaxe et sémantique.
Introduction aux techniques de l'Intelligence Artificielle, complémentée par des exercices de programmation qui montrent les algorithmes et des exemples de leur application à des problèmes pratiques.
We introduce formal verification as an approach for developing highly reliable systems. Formal verification finds proofs that computer systems work under all relevant scenarios. We will learn how to u
En logique, les systèmes à la Hilbert servent à définir les déductions formelles en suivant un modèle proposé par David Hilbert au début du : un grand nombre daxiomes logiques exprimant les principales propriétés de la logique que l'on combine au moyen de quelques règles, notamment la règle de modus ponens, pour dériver de nouveaux théorèmes. Les systèmes à la Hilbert héritent du système défini par Gottlob Frege et constituent les premiers systèmes déductifs, avant l'apparition de la déduction naturelle ou du calcul des séquents, appelés parfois par opposition systèmes à la Gentzen.
En logique mathématique, la déduction naturelle est un système formel où les règles de déduction des démonstrations sont proches des façons naturelles de raisonner. C'est une étape importante de l'histoire de la théorie de la démonstration pour plusieurs raisons : contrairement aux systèmes à la Hilbert fondés sur des listes d'axiomes logiques plus ou moins ad hoc, la déduction naturelle repose sur un principe systématique de symétrie : pour chaque connecteur, on donne une paire de règles duales (introduction/élimination) ; elle a conduit Gentzen à inventer un autre formalisme très important en théorie de la démonstration, encore plus « symétrique » : le calcul des séquents ; elle a permis dans les années 1960 d'identifier la première instance de l'isomorphisme de Curry-Howard.
Quand on parle de théorie mathématique, on fait référence à une somme d'énoncés, de définitions, de méthodes de preuve, etc. La théorie de la calculabilité en est un exemple. Par théorie axiomatique, on fait référence à quelque chose de plus précis, des axiomes et leurs conséquences, les théorèmes, énoncés dans un langage précis. Dans la suite on dira le plus souvent théorie pour théorie axiomatique, ce qui est d'usage courant en logique mathématique.
Couvre les bases et les applications du calcul séquentiel en logique et théorie des preuves, y compris l'élimination des coupes et l'analyse des preuves pratiques.
, ,
Recent advances in biosensing technologies have led to applications of biosensor probe arrays for rapid identification of biological agents such as drugs, gene expressions, proteins, cholesterol and fats in an input sample. However, monitoring the simultan ...
Although the Modus Ponens inference is one of the most basic logical rules, decades of conditional reasoning research show that it is often rejected when people consider stored background knowledge about potential disabling conditions. In the present study ...
Simulation is a key issue in the design of control electrical systems. Simulation packages using component library, such as PSIM®, are very useful to achieve this goal. The simulation model is thus easily built from the system topology (structural model). ...