Non sequiturNon sequitur signifie, en latin, « qui ne suit pas les prémisses ». En logique formelle, un argument est un non sequitur si la conclusion ne suit pas les prémisses. Le terme de non sequitur a une application spéciale en droit, sous une définition juridique formelle. Affirmation du conséquent Le non sequitur peut désigner un sophisme. Bien que la conclusion puisse être soit vraie soit fausse, le raisonnement est fallacieux car il ne suit pas les prémisses. Tous les sophismes sont en fait des sortes différentes de non sequitur.
Idéographiethumb|Page de titre de l'ouvrage de Frege de 1879, Begriffschrift (Idéographie). L'idéographie (Begriffsschrift) est un langage entièrement formalisé inventé par le logicien Gottlob Frege et qui a pour but de représenter de manière parfaite la logique mathématique. Le projet d'un langage entièrement formalisé n'est pas nouveau : Leibniz en avait développé un, qui n'aboutit pas, sous le nom de caractéristique universelle.
Syllogisme hypothétiqueEn logique classique, un syllogisme hypothétique est une règle d'inférence valide, qui prend la forme d'un syllogisme ayant une implication pour un ou deux de ses prémisses. Si je ne me réveille pas, alors je ne peux pas aller travailler. Si je ne peux pas aller travailler, alors je ne vais pas être payé. Par conséquent, si je ne me réveille pas, alors je ne vais pas être payé. En logique propositionnelle, un syllogisme hypothétique est le nom d'une règle d'inférence valide (souvent abrégé HS et parfois aussi appelé l'argument de la chaîne, la règle de la chaîne, ou le principe de transitivité de l'implication).
Les Lois de la penséeAn Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities by George Boole, published in 1854, is the second of Boole's two monographs on algebraic logic. Boole was a professor of mathematics at what was then Queen's College, Cork (now University College Cork), in Ireland. The historian of logic John Corcoran wrote an accessible introduction to Laws of Thought and a point by point comparison of Prior Analytics and Laws of Thought.
Carré logiqueLe carré logique ci contre représente les oppositions logiques entre les quatre propositions : Proposition notée A, universelle affirmative : « tous les S sont P » (SaP : S are all P) Proposition notée E, universelle négative : « aucun S n'est P » ou « tous les S sont non-P » (SeP : S excluded from P) Proposition notée I, particulière affirmative : « au moins un S est P » (SiP : some S in P). Proposition notée O, particulière négative : « au moins un S est non-P » (SoP : some S out of P), qui exprime la précédente négativement.
Implication réciproqueEn mathématiques, plus précisément en calcul propositionnel, une implication réciproque est une proposition interchangeant la prémisse et la conclusion d'une implication. La réciproque de la réciproque est alors l'implication initiale. Lorsque l'implication comporte plusieurs prémisses, l'échange de la conclusion avec seulement une partie des prémisses est parfois aussi appelée réciproque, comme pour le théorème de Thalès où les conditions d'alignement restent en prémisse pour la réciproque.