Validité (logique)En logique, la validité est la manière dont les prémisses et la conclusion concordent logiquement dans les arguments réussis. La forme d'une argumentation déductive est dite valide si et seulement si elle utilise des règles d’inférence par lesquelles il est impossible d’obtenir une conclusion fausse à partir de prémisses vraies. Un argument est valide si et seulement si la vérité de ses prémisses entraîne celle de sa conclusion. Il serait contradictoire d'affirmer les prémisses et de nier la conclusion.
Pierre AbélardAbélard, Abailard, ou encore Abeilard (Abaelardus), Pierre alias Petrus en religion (né en 1079 au Pallet près de Nantes - mort le , au prieuré Saint-Marcel près de Chalon-sur-Saône), est un philosophe, dialecticien et théologien chrétien français, père de la scolastique, inventeur du conceptualisme et époux d'Héloïse. Né dans une famille de souche poitevine établie dans le duché de Bretagne, il a été abbé de Rhuys mais a exercé principalement dans ce qui est l'Île-de-France actuelle comme professeur appointé par des familles aristocratiques et comme compositeur de chansons pour goliards.
Induction (logique)L'induction est historiquement le nom utilisé pour signifier un genre de raisonnement qui se propose de chercher des lois générales à partir de l'observation de faits particuliers, sur une base probabiliste. Remarque : Bien qu'associée dans le titre de cet article à la logique, la présentation qui suit correspond surtout à la notion bayésienne, utilisée consciemment ou non, de l'induction.
Logique modaleEn logique mathématique, une logique modale est un type de logique formelle qui étend la logique propositionnelle, la logique du premier ordre ou la logique d'ordre supérieur avec des modalités. Une modalité spécifie des . Par exemple, une proposition comme « il pleut » peut être précédée d'une modalité : Il est nécessaire qu'''il pleuve ; Demain, il pleut ; Christophe Colomb croit quil pleut ; Il est démontré qu'''il pleut ; Il est obligatoire quil pleuve.
Déduction logiqueLa déduction logique est un type de relation que l'on rencontre en logique mathématique. Elle relie des propositions dites prémisses à une proposition dite conclusion et préserve la vérité. Prémisses et conclusion qui sont ainsi reliées par une règle de déduction, assurent que si la règle est valide et si les prémisses sont vraies, la conclusion est elle aussi vraie. On dit alors que la conclusion est une conséquence des prémisses, ou parfois que la conclusion vient des prémisses.
Categorical propositionIn logic, a categorical proposition, or categorical statement, is a proposition that asserts or denies that all or some of the members of one category (the subject term) are included in another (the predicate term). The study of arguments using categorical statements (i.e., syllogisms) forms an important branch of deductive reasoning that began with the Ancient Greeks. The Ancient Greeks such as Aristotle identified four primary distinct types of categorical proposition and gave them standard forms (now often called A, E, I, and O).
Premiers AnalytiquesLes Premiers Analytiques sont un ouvrage d'Aristote et constituent le troisième livre de l’Organon et la première partie des Analytiques. Aristote y développe l'essentiel de sa logique et de la syllogistique qui constitue la naissance de la logique comme discipline formelle. Premiers analytiques, trad. Jules Barthélemy-Saint-Hilaire Premiers analytiques, trad. Jules Tricot, Vrin. Günther Patzig, Die aristotelische Syllogistik. Logisch-philologische Untersuchung über das Buch A der "Ersten Analytik", éd.
George BooleGeorge Boole, né le à Lincoln (Royaume-Uni) et mort le à Ballintemple (Irlande), est un logicien, mathématicien et philosophe britannique. Il est le créateur de la logique moderne, fondée sur une structure algébrique et sémantique, que l'on appelle algèbre de Boole en son honneur. Il a aussi travaillé dans d'autres domaines mathématiques, des équations différentielles aux probabilités en passant par l'analyse. Autodidacte, il publia ses premiers travaux d'algèbre tout en exerçant son métier d'instituteur et de directeur d'école dans la région de Lincoln.
Logical formIn logic, logical form of a statement is a precisely-specified semantic version of that statement in a formal system. Informally, the logical form attempts to formalize a possibly ambiguous statement into a statement with a precise, unambiguous logical interpretation with respect to a formal system. In an ideal formal language, the meaning of a logical form can be determined unambiguously from syntax alone. Logical forms are semantic, not syntactic constructs; therefore, there may be more than one string that represents the same logical form in a given language.
Seconds AnalytiquesLes Seconds Analytiques ou Analytiques postérieurs sont un ouvrage d'Aristote et constituent le quatrième livre de l'Organon (selon la classification des commentateurs antiques et médiévaux), et la seconde partie des Analytiques. Ils traitent, non plus comme les Premiers Analytiques, du syllogisme en général, mais d'un type particulier de syllogisme, le « syllogisme scientifique », ou démonstration. La science y est présentée comme un système déductif. Connaître, c'est connaître la cause, c'est-à-dire le d'une chose.