Concept

Tétration

Concepts associés (16)
Notation des puissances itérées de Knuth
En mathématiques, la notation des puissances itérées de Knuth est une notation qui permet d'écrire de très grands entiers et qui a été introduite par Donald Knuth en 1976. L'idée de cette notation est fondée sur la notion d'exponentiation répétée, au même titre que l'exponentiation consiste en une multiplication itérée ou la multiplication en une addition itérée. vignette|Si une rangée de dominos représente un nombre, « incrémenter » ce nombre consiste à ajouter un domino.
Notation des flèches chaînées de Conway
La notation des flèches chaînées de Conway est une notation créée par le mathématicien John Horton Conway, permettant d'exprimer de très grands nombres. Elle consiste en une suite finie d'entiers positifs séparés par des flèches, comme Comme beaucoup d'autres expressions combinatoires, sa définition est récursive. Au bout du compte, elle revient à élever le nombre le plus à gauche à une puissance entière et généralement énorme.
Hyperopération
En mathématiques, les hyperopérations (ou hyperopérateurs) constituent une suite infinie d'opérations qui prolonge logiquement la suite des opérations arithmétiques élémentaires suivantes : addition (n = 1) : multiplication (n = 2) : exponentiation (n = 3) : Reuben Goodstein proposa de baptiser les opérations au-delà de l'exponentiation en utilisant des préfixes grecs : tétration (n = 4), pentation (n = 5), hexation (n = 6), etc. L'hyperopération à l'ordre n peut se noter à l'aide d'une flèche de Knuth au rang n – 2.
Fonction d'Ackermann
Dans la théorie de la récursivité, la fonction d'Ackermann (aussi appelée fonction d'Ackermann-Péter) est un exemple simple de fonction récursive non récursive primitive, trouvée en 1926 par Wilhelm Ackermann. Elle est souvent présentée sous la forme qu'en a proposée la mathématicienne Rózsa Péter, comme une fonction à deux paramètres entiers naturels comme arguments et qui retourne un entier naturel comme valeur, noté en général A(m, n).
Croissance exponentielle
thumb|Comparaison entre une croissance linéaire (en rouge), cubique (en bleu) et exponentielle (en vert) |300x300px La croissance exponentielle d'une quantité est son augmentation au fil du temps selon une loi exponentielle. On l'observe quand la dérivée par rapport au temps de cette quantité (c'est-à-dire son taux de variation instantané) est positive et proportionnelle à la quantité elle-même. Dans la langue courante on emploie souvent, mais improprement, le terme « croissance exponentielle » pour qualifier une augmentation simplement accélérée, quand la dérivée est elle-même croissante.
Fonction successeur
En mathématiques, la fonction successeur est une fonction récursive primitive S telle que S(n) = n+1 pour tout entier naturel n. Par exemple, S(1) = 2 et S(2) = 3. La fonction successeur apparaît dans les axiomes de Peano qui définissent les entiers naturels. Elle n'y est pas définie à partir de l'opération d'addition, mais est une opération primitive qui sert à définir les entiers naturels à partir de 0, mais aussi les autres opérations sur les entiers naturels, dont l'addition.
Nombre irrationnel
Un nombre irrationnel est un nombre réel qui n'est pas rationnel, c'est-à-dire qu'il ne peut pas s'écrire sous la forme d'une fraction a/b, où a et b sont deux entiers relatifs (avec b non nul). Les nombres irrationnels peuvent être caractérisés de manière équivalente comme étant les nombres réels dont le développement décimal n'est pas périodique ou dont le développement en fraction continue est infini. On distingue, parmi les nombres irrationnels, deux sous-ensembles complémentaires : les nombres algébriques non rationnels et les nombres transcendants.
Théorème de Goodstein
En mathématiques, et plus précisément en logique mathématique, le 'théorème de Goodstein' est un énoncé arithmétique portant sur des suites, dites suites de Goodstein. Les suites de Goodstein sont des suites d'entiers à la croissance initiale extrêmement rapide, et le théorème établit que (en dépit des apparences) toute suite de Goodstein se termine par 0. Il doit son nom à son auteur, le mathématicien et logicien Reuben Goodstein.
Large numbers
Large numbers are numbers significantly larger than those typically used in everyday life (for instance in simple counting or in monetary transactions), appearing frequently in fields such as mathematics, cosmology, cryptography, and statistical mechanics. They are typically large positive integers, or more generally, large positive real numbers, but may also be other numbers in other contexts. Googology is the study of nomenclature and properties of large numbers.
Logarithme itéré
vignette|Graphique montrant le logarithme itéré En informatique, le logarithme itéré d'un nombre n, noté (lu "log star" ou "log étoile"), est le nombre de fois que le logarithme doit lui être appliqué avant que le résultat soit inférieur ou égal à 1. Cette fonction est utilisée pour décrire la complexité de certains algorithmes, notamment en algorithmique distribuée. Le logarithme itéré de base b peut être défini par : Sur les nombres réels positifs, le continu (l'inverse de la tétration) est essentiellement équivalente : Le tableau suivant donne les valeurs du logarithme itéré (en base 2) : Cette fonction croît extrêmement lentement.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.