Concepts associés (39)
Pseudo-forêt
vignette|upright=1.2 |Une 1-forêt (une pseudo-forêt maximale), composée de trois 1-arbres En théorie des graphes, une pseudo-forêt est un graphe non orienté, ou même un multigraphe dans lequel chaque composante connexe possède au plus un cycle. De manière équivalente, une pseudo-forêt est un graphe dans lequel deux cycles ne sont pas connectés par une chaîne. Un pseudo-arbre est une pseudo-forêt connexe. Les noms évoquent l'analogie avec les arbres et les forêts plus couramment étudiés : un arbre est un graphe connexe sans cycle ; une forêt est une union disjointe d'arbres.
Graphe nul
En mathématiques, plus spécialement en théorie des graphes, un graphe nul désigne soit un graphe d'ordre zéro (i.e. sans sommets), soit un graphe avec sommets mais sans arêtes (on parle aussi dans ce dernier cas de graphe vide). Lorsqu'un graphe nul contient des sommets tous isolés, on le note où représente le nombre de sommets du graphe. La taille (i.e. le nombre d'arêtes ou d'arcs) d'un graphe nul est toujours zéro. L'ordre (i.e. le nombre de sommets) d'un graphe nul n'est pas nécessairement zéro.
Graph enumeration
In combinatorics, an area of mathematics, graph enumeration describes a class of combinatorial enumeration problems in which one must count undirected or directed graphs of certain types, typically as a function of the number of vertices of the graph. These problems may be solved either exactly (as an algebraic enumeration problem) or asymptotically. The pioneers in this area of mathematics were George Pólya, Arthur Cayley and J. Howard Redfield.
Orientation (graph theory)
In graph theory, an orientation of an undirected graph is an assignment of a direction to each edge, turning the initial graph into a directed graph. A directed graph is called an oriented graph if none of its pairs of vertices is linked by two symmetric edges. Among directed graphs, the oriented graphs are the ones that have no 2-cycles (that is at most one of (x, y) and (y, x) may be arrows of the graph). A tournament is an orientation of a complete graph. A polytree is an orientation of an undirected tree.
Formule de Cayley
En mathématiques, et plus particulièrement en théorie des graphes, la formule de Cayley est un résultat sur les arbres du théoricien Arthur Cayley. Elle affirme le résultat suivant : Note : on parle aussi d'arbres décorés ou étiquetés pour dire que l'on identifie les sommets avec des couleurs, des nombres, etc. On parle aussi d'arbres de Cayley. Pour l'exemple illustré ci-contre, on obtient les résultats suivants, en appliquant le théorème : 1 arbre avec 2 sommets, 3 arbres avec 3 sommets, 16 arbres avec 4 sommets.
Arborescence (graph theory)
In graph theory, an arborescence is a directed graph in which, for a vertex u (called the root) and any other vertex v, there is exactly one directed path from u to v. An arborescence is thus the directed-graph form of a rooted tree, understood here as an undirected graph. Equivalently, an arborescence is a directed, rooted tree in which all edges point away from the root; a number of other equivalent characterizations exist. Every arborescence is a directed acyclic graph (DAG), but not every DAG is an arborescence.
Graphe chemin
In the mathematical field of graph theory, a path graph (or linear graph) is a graph whose vertices can be listed in the order v_1, v_2, ..., v_n such that the edges are {v_i, v_i+1} where i = 1, 2, ..., n − 1. Equivalently, a path with at least two vertices is connected and has two terminal vertices (vertices that have degree 1), while all others (if any) have degree 2. Paths are often important in their role as subgraphs of other graphs, in which case they are called paths in that graph.
Densité d'un graphe
En mathématiques, et plus particulièrement en théorie des graphes, on peut associer à tout graphe un entier appelé densité du graphe. Ce paramètre mesure si le graphe a beaucoup d'arêtes ou peu. Un graphe dense (dense graph) est un graphe dans lequel le nombre d'arêtes (ou d'arcs) est proche du nombre maximal, par exemple un nombre quadratique par rapport au nombre de sommets. Un graphe creux (sparse graph) a au contraire peu d'arêtes, par exemple un nombre linéaire. La distinction entre graphe creux et dense est plutôt vague et dépend du contexte.
Distance (théorie des graphes)
En théorie des graphes, la distance entre deux nœuds d'un graphe est la longueur d'un plus court chemin entre ces deux nœuds. La longueur d'un chemin est sa longueur en nombre d'arêtes. Pour un graphe pondéré c'est la somme des poids des arêtes empruntées. Pour les graphes non orientés, c'est une distance au sens mathématique, tandis que pour les graphes orientés elle ne vérifie pas la propriété de symétrie. Cette notion permet entre autres de définir le diamètre et le rayon d'un graphe. Catégorie:Concept
Arbre généalogique
vignette|droite|Arbre généalogique de Carl Gustav Bielke. Un arbre généalogique est une représentation graphique de la généalogie ascendante ou descendante d'un individu, dit de cujus (celui sur lequel porte la généalogie). Par abus de langage, cette représentation structurée des liens familiaux entre les personnes est souvent appelée arbre à l'image de l'arbre végétal mais il existe également d'autres représentations par exemple circulaire ou semi-circulaire.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.