ME-427: Networked control systemsThis course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
PHYS-512: Statistical physics of computationThe students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
MATH-261: Discrete optimizationThis course is an introduction to linear and discrete optimization.
Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
CS-250: Algorithms IThe students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
CS-450: Algorithms IIA first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
MATH-417: Number theory II.b - selected topicsThis year's topic is "Additive combinatorics and applications." We will introduce various methods from additive combinatorics, establish the sum-product theorem over finite fields and derive various a