MATH-302: Functional analysis IConcepts de base de l'analyse fonctionnelle linéaire: opérateurs bornés, opérateurs compacts, théorie spectrale pour les opérateurs symétriques et compacts, le théorème de Hahn-Banach, les théorèmes d
MATH-410: Riemann surfacesThis course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-502: Distribution and interpolation spacesThe goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
MATH-225: Topology II - fundamental groupsOn étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre
MATH-476: Optimal transportThe first part is devoted to Monge and Kantorovitch problems, discussing the existence and the properties of the optimal plan. The second part introduces the Wasserstein distance on measures and devel
MATH-106(e): Analysis IIÉtudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs
variables.
PHYS-431: Quantum field theory IThe goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
MATH-494: Topics in arithmetic geometryP-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic
MATH-301: Ordinary differential equationsCe cours donne une introduction rigoureuse au principaux thèmes de la théorie des équations différentielles ordinaires (EDO). Les EDO sont fondamentales pour l'étude des systèmes dynamiques et des équ