In statistics, binomial regression is a regression analysis technique in which the response (often referred to as Y) has a binomial distribution: it is the number of successes in a series of n independent Bernoulli trials, where each trial has probability of success p. In binomial regression, the probability of a success is related to explanatory variables: the corresponding concept in ordinary regression is to relate the mean value of the unobserved response to explanatory variables. Binomial regression is closely related to binary regression: a binary regression can be considered a binomial regression with , or a regression on ungrouped binary data, while a binomial regression can be considered a regression on grouped binary data (see comparison). Binomial regression models are essentially the same as binary choice models, one type of discrete choice model: the primary difference is in the theoretical motivation (see comparison). In machine learning, binomial regression is considered a special case of probabilistic classification, and thus a generalization of binary classification. In one published example of an application of binomial regression, the details were as follows. The observed outcome variable was whether or not a fault occurred in an industrial process. There were two explanatory variables: the first was a simple two-case factor representing whether or not a modified version of the process was used and the second was an ordinary quantitative variable measuring the purity of the material being supplied for the process. The response variable Y is assumed to be binomially distributed conditional on the explanatory variables X. The number of trials n is known, and the probability of success for each trial p is specified as a function θ(X). This implies that the conditional expectation and conditional variance of the observed fraction of successes, Y/n, are The goal of binomial regression is to estimate the function θ(X). Typically the statistician assumes , for a known function m, and estimates β.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.