Concept

Somme des n premiers cubes

Résumé
In number theory, the sum of the first n cubes is the square of the nth triangular number. That is, The same equation may be written more compactly using the mathematical notation for summation: This identity is sometimes called Nicomachus's theorem, after Nicomachus of Gerasa (c. 60 – c. 120 CE). Nicomachus, at the end of Chapter 20 of his Introduction to Arithmetic, pointed out that if one writes a list of the odd numbers, the first is the cube of 1, the sum of the next two is the cube of 2, the sum of the next three is the cube of 3, and so on. He does not go further than this, but from this it follows that the sum of the first n cubes equals the sum of the first odd numbers, that is, the odd numbers from 1 to . The average of these numbers is obviously , and there are of them, so their sum is Many early mathematicians have studied and provided proofs of Nicomachus's theorem. claims that "every student of number theory surely must have marveled at this miraculous fact". finds references to the identity not only in the works of Nicomachus in what is now Jordan in the first century CE, but also in those of Aryabhata in India in the fifth century, and in those of Al-Karaji circa 1000 in Persia. mentions several additional early mathematical works on this formula, by Al-Qabisi (tenth century Arabia), Gersonides (circa 1300 France), and Nilakantha Somayaji (circa 1500 India); he reproduces Nilakantha's visual proof. The sequence of squared triangular numbers is These numbers can be viewed as figurate numbers, a four-dimensional hyperpyramidal generalization of the triangular numbers and square pyramidal numbers. As observes, these numbers also count the number of rectangles with horizontal and vertical sides formed in an n × n grid. For instance, the points of a 4 × 4 grid (or a square made up of three smaller squares on a side) can form 36 different rectangles. The number of squares in a square grid is similarly counted by the square pyramidal numbers. The identity also admits a natural probabilistic interpretation as follows.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.