Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Discute de la distribution de Dirichlet, de l'inférence bayésienne, de la moyenne postérieure et de la variance, des antécédents conjugués et de la distribution prédictive dans le modèle de Dirichlet-Multinôme.
Explore les principes fondamentaux de la régression linéaire, en soulignant limportance des techniques de régularisation pour améliorer la performance du modèle.
Couvre les principes fondamentaux de la théorie de la détection et de l'estimation, en se concentrant sur l'erreur moyenne au carré et le test d'hypothèses.