Concepts associés (16)
Loi de Coulomb (électrostatique)
thumb| Dans les deux cas, la force est proportionnelle au produit des charges et varie en carré inverse de la distance entre les charges. La loi de Coulomb exprime, en électrostatique, la force de l'interaction électrique entre deux particules chargées électriquement. Elle est nommée d'après le physicien français Charles-Augustin Coulomb qui l'a énoncée en 1785 et elle forme la base de l'électrostatique. Elle peut s'énoncer ainsi : thumb|Balance de Coulomb.
État plasma
thumb|upright|Le soleil est une boule de plasma. thumb|Lampe à plasma.|168x168px thumb|upright|Les flammes de haute température sont des plasmas. L'état plasma est un état de la matière, tout comme l'état solide, l'état liquide ou l'état gazeux, bien qu'il n'y ait pas de transition brusque pour passer d'un de ces états au plasma ou réciproquement. Il est visible sur Terre, à l'état naturel, le plus souvent à des températures élevées favorables aux ionisations, signifiant l’arrachement d'électrons aux atomes.
Loi de Lenz-Faraday
En physique, la loi de Lenz-Faraday, ou loi de Faraday, permet de rendre compte des phénomènes macroscopiques d'induction électromagnétique. Elle exprime l'apparition d'une force électromotrice (tension) dans un circuit électrique, lorsque celui-ci est immobile dans un champ magnétique variable ou lorsque le circuit est mobile dans un champ magnétique constant ou permanent. À l'origine empirique, cette loi est fondée sur les travaux de Michael Faraday en 1831 et sur l'énoncé de Heinrich Lenz de 1834.
Champ solénoïdal
thumb|Champ solénoïdal En analyse vectorielle, un champ solénoïdal ou champ incompressible désigne un champ vectoriel dont la divergence est nulle, ou de manière équivalente dont le flot préserve le volume euclidien. L’incompressibilité fait référence à la conservation du volume.
Gauss's law for magnetism
In physics, Gauss's law for magnetism is one of the four Maxwell's equations that underlie classical electrodynamics. It states that the magnetic field B has divergence equal to zero, in other words, that it is a solenoidal vector field. It is equivalent to the statement that magnetic monopoles do not exist. Rather than "magnetic charges", the basic entity for magnetism is the magnetic dipole. (If monopoles were ever found, the law would have to be modified, as elaborated below.
Surface de Gauss
En électromagnétisme, une surface de Gauss est une surface imaginaire de l'espace utilisée dans le calcul des champs électriques par le théorème de Gauss. Puisque le théorème de Gauss peut être utilisé dans le cas de certaines symétries particulières du champ électrique, on distingue principalement trois classes de surfaces de Gauss. vignette|Sphère de Gauss autour d'une charge ponctuelle. Utilisée pour des objets chargés de symétrie sphérique, par exemple une charge ponctuelle.
Flux (physique)
En physique, un flux est une intégrale de surface de la composante normale d'un champ vectoriel sur une surface donnée. Le champ vectoriel associé est souvent nommé densité de flux. Cette définition rejoint celle du flux en mathématiques. Si dans certains domaines de la physique, le flux est également un débit, lié à un déplacement de matière ou à un transfert d'énergie, ce n'est pas toujours le cas : on aime malgré tout se représenter un flux comme caractéristique de ce qui s'écoule le long des lignes de champs à travers la frontière que marque la surface.
Solénoïde
Cette page traite du dispositif électromagnétique. Pour l'objet mathématique, voir Solénoïde (mathématiques). Un solénoïde (du grec « solen », « tuyau », « conduit », et « eidos », « en forme de ») est un dispositif constitué d'un fil électrique en métal enroulé régulièrement en hélice de façon à former une bobine longue. C'est pourquoi le solénoïde prend aussi le terme de bobine. Parcouru par un courant alternatif ou continu, il produit un champ magnétique dans son voisinage, et plus particulièrement à l'intérieur de l'hélice.
Champ électrique
thumb|Champ électrique associé à son propagateur qu'est le photon. right|thumb|Michael Faraday introduisit la notion de champ électrique. En physique, le champ électrique est le champ vectoriel créé par des particules électriquement chargées. Plus précisément, des particules chargées modifient les propriétés locales de l'espace, ce que traduit justement la notion de champ. Si une autre charge se trouve dans ce champ, elle subira l'action de la force électrique exercée à distance par la particule : le champ électrique est en quelque sorte le "médiateur" de cette action à distance.
Théorème d'Ampère
En magnétostatique, le théorème d'Ampère permet de déterminer la valeur du champ magnétique grâce à la donnée des courants électriques. Ce théorème est une forme intégrale de l'équation de Maxwell-Ampère. Il a été découvert par André-Marie Ampère, et constitue l'équivalent magnétostatique du théorème de Gauss. Pour être appliqué analytiquement de manière simple, le théorème d'Ampère nécessite que le problème envisagé soit de symétrie élevée.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.