Opérateur elliptiqueEn mathématiques, un opérateur elliptique est un opérateur différentiel qui généralise l'opérateur laplacien. Les opérateurs elliptiques sont définis via la condition que les coefficients devant les termes de dérivation de plus haut degré soient positifs, ce qui est équivalent au fait qu'il n'y a pas de caractéristique réelle. Les opérateurs elliptiques jouent un rôle crucial en théorie du potentiel et apparaissent fréquemment en électrostatique et en mécanique des milieux continus.
Théorème d'uniformisation de RiemannEn mathématiques, le théorème d'uniformisation de Riemann est un résultat de base dans la théorie des surfaces de Riemann, c'est-à-dire des variétés complexes de dimension 1. Il assure que toute surface de Riemann simplement connexe peut être mise en correspondance biholomorphe avec l'une des trois surfaces suivantes : le plan complexe C, le disque unité de ce plan, ou la sphère de Riemann, c'est-à-dire la droite projective complexe P1(C). Théorème d'uniformisation Transformation conforme Catégorie:Surface
Closed and exact differential formsIn mathematics, especially vector calculus and differential topology, a closed form is a differential form α whose exterior derivative is zero (dα = 0), and an exact form is a differential form, α, that is the exterior derivative of another differential form β. Thus, an exact form is in the of d, and a closed form is in the kernel of d. For an exact form α, α = dβ for some differential form β of degree one less than that of α. The form β is called a "potential form" or "primitive" for α.