En mathématiques, un opérateur elliptique est un opérateur différentiel qui généralise l'opérateur laplacien. Les opérateurs elliptiques sont définis via la condition que les coefficients devant les termes de dérivation de plus haut degré soient positifs, ce qui est équivalent au fait qu'il n'y a pas de caractéristique réelle. Les opérateurs elliptiques jouent un rôle crucial en théorie du potentiel et apparaissent fréquemment en électrostatique et en mécanique des milieux continus. Les solutions stationnaires (c'est-à-dire indépendante du temps) d'équations paraboliques et d'équations hyperboliques sont souvent solutions d'équations elliptiques. Une propriété importante des opérateurs elliptiques sont la régularité elliptique : leurs solutions ont tendance à être lisses (si les coefficients le sont). Un opérateur différentiel L d'ordre m dans un domaine de Rn défini par (où est multi-indice et ) est dit elliptique si pour tout x dans et pour tout dans Rn non nul, on a où . Dans beaucoup d'applications, cette condition n'est pas assez forte. À la place, une condition d'ellipticité uniforme doit être imposée pour les opérateurs de degré : où C est une constante positive. À noter que la condition d'ellipticité ne dépend que des termes de plus haut degré. Un opérateur non-linéaire est dit elliptique si le premier terme de sa série de Taylor par rapport à u ainsi que toutes ses dérivées en tout point est un opérateur linéaire elliptique. Exemple 1 L'opposé de l'opérateur laplacien dans Rd défini par est un opérateur uniformément elliptique. Cet opérateur intervient souvent en électrostatique. Si ρ est une densité de charges dans une région Ω, le potentiel Φ est solution de Exemple 2 Étant donné une fonction A à valeurs matricielles telle que A(x) soit symétrique définie positive pour tout x, et qui a pour composantes aij, l'opérateur est elliptique. C'est la forme la plus générale d'opérateurs linéaire sous forme divergence d'ordre 2 qui est elliptique. L'opérateur laplacien est un cas particulier correspondant à A = I.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (14)
MATH-664: Malliavin calculus and normal approximations
This course will provide a basic knowledge of the stochastic calculus of variations with respect to the Brownian motion. A variety of applications will be presented including the regularity of probabi
PHYS-641: Quantum Computing
After introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament
EE-726: Sparse stochastic processes
We cover the theory and applications of sparse stochastic processes (SSP). SSP are solutions of differential equations driven by non-Gaussian innovations. They admit a parsimonious representation in a
Afficher plus
Publications associées (124)
Concepts associés (10)
Fundamental solution
In mathematics, a fundamental solution for a linear partial differential operator L is a formulation in the language of distribution theory of the older idea of a Green's function (although unlike Green's functions, fundamental solutions do not address boundary conditions). In terms of the Dirac delta "function" δ(x), a fundamental solution F is a solution of the inhomogeneous equation Here F is a priori only assumed to be a distribution. This concept has long been utilized for the Laplacian in two and three dimensions.
Équation aux dérivées partielles hyperbolique
En mathématiques, un problème hyperbolique ou équation aux dérivées partielles hyperbolique est une classe d'équations aux dérivées partielles (EDP) modélisant des phénomènes de propagation, émergeant par exemple naturellement en mécanique. Un archétype d'équation aux dérivées partielles hyperbolique est l'équation des ondes : Les solutions des problèmes hyperboliques possèdent des propriétés ondulatoires. Si une perturbation localisée est faite sur la donnée initiale d'un problème hyperbolique, alors les points de l'espace éloignés du support de la perturbation ne ressentiront pas ses effets immédiatement.
Fonction harmonique
En mathématiques, une fonction harmonique est une fonction qui satisfait l'équation de Laplace. Un problème classique concernant les fonctions harmoniques est le problème de Dirichlet : étant donné une fonction continue définie sur la frontière d'un ouvert, peut-on la prolonger par une fonction qui soit harmonique en tout point de l'ouvert ? L'équation est appelée équation de Laplace. Une fonction harmonique est donc, par définition, une solution de cette équation. Les fonctions constantes sont harmoniques sur .
Afficher plus