In mathematics, especially vector calculus and differential topology, a closed form is a differential form α whose exterior derivative is zero (dα = 0), and an exact form is a differential form, α, that is the exterior derivative of another differential form β. Thus, an exact form is in the of d, and a closed form is in the kernel of d.
For an exact form α, α = dβ for some differential form β of degree one less than that of α. The form β is called a "potential form" or "primitive" for α. Since the exterior derivative of a closed form is zero, β is not unique, but can be modified by the addition of any closed form of degree one less than that of α.
Because d^2 = 0, every exact form is necessarily closed. The question of whether every closed form is exact depends on the topology of the domain of interest. On a contractible domain, every closed form is exact by the Poincaré lemma. More general questions of this kind on an arbitrary differentiable manifold are the subject of de Rham cohomology, which allows one to obtain purely topological information using differential methods.
A simple example of a form that is closed but not exact is the 1-form given by the derivative of argument on the punctured plane . Since is not actually a function (see the next paragraph) is not an exact form. Still, has vanishing derivative and is therefore closed.
Note that the argument is only defined up to an integer multiple of since a single point can be assigned different arguments , , etc. We can assign arguments in a locally consistent manner around , but not in a globally consistent manner. This is because if we trace a loop from counterclockwise around the origin and back to , the argument increases by . Generally, the argument changes by
over a counter-clockwise oriented loop .
Even though the argument is not technically a function, the different local definitions of at a point differ from one another by constants. Since the derivative at only uses local data, and since functions that differ by a constant have the same derivative, the argument has a globally well-defined derivative "".
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Un champ de vecteurs est dit à circulation conservative (ou irrotationnel) si sa circulation sur toute courbe fermée est nulle (son rotationnel est alors nul, et réciproquement). Sous certaines conditions relatives au domaine de définition et à la régularité du champ, on peut dériver le potentiel de ce champ, fonction scalaire qui en permet une représentation alternative. De même, un champ de vecteurs est dit à flux conservatif si son flux sur toute surface fermée est nul (sa divergence est alors nulle, et réciproquement).
En mathématiques, la cohomologie de De Rham est un outil de topologie différentielle, c'est-à-dire adapté à l'étude des variétés différentielles. Il s'agit d'une théorie cohomologique fondée sur des propriétés algébriques des espaces de formes différentielles sur la variété. Elle porte le nom du mathématicien Georges de Rham. Le affirme que le morphisme naturel, de la cohomologie de De Rham d'une variété différentielle vers sa cohomologie singulière à coefficients réels, est bijectif.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Smooth manifolds constitute a certain class of topological spaces which locally look like some Euclidean space R^n and on which one can do calculus. We introduce the key concepts of this subject, such
The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.
This manuscript extends the relaxation theory from nonlinear elasticity to electromagnetism and to actions defined on paths of differential forms. The introduction of a gauge allows for a reformulation of the notion of quasiconvexity in Bandyopadhyay et al ...
SPRINGER2019
In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...