Publications associées (110)

Gibbs sampling the posterior of neural networks

Lenka Zdeborová, Giovanni Piccioli, Emanuele Troiani

In this paper, we study sampling from a posterior derived from a neural network. We propose a new probabilistic model consisting of adding noise at every pre- and post-activation in the network, arguing that the resulting posterior can be sampled using an ...
Bristol2024

Tool Developments in the OpenMC Code: Correlated Sampling and Transient Fission Matrix Approach Coupled to OpenFOAM

Axel Guy Marie Laureau, Elsa Merle

This article outlines the advancements made in broadening the application scope of the OpenMC neutron transport code to include thermohydraulic coupling and nuclear data uncertainty propagation. These developments primarily involve the incorporation of the ...
Taylor & Francis Inc2024

Sense in Motion with Belief Clustering: Efficient Gas Source Localization with Mobile Robots

Alcherio Martinoli, Wanting Jin

Given the patchy nature of gas plumes and the slow response of conventional gas sensors, the use of mobile robots for Gas Source Localization (GSL) tasks presents significant challenges. These aspects increase the difficulties in obtaining gas measurement ...
2024

Center-aware Adversarial Augmentation for Single Domain Generalization

Mathieu Salzmann, Zhiye Wang

Domain generalization (DG) aims to learn a model from multiple training (i.e., source) domains that can generalize well to the unseen test (i.e., target) data coming from a different distribution. Single domain generalization (SingleDG) has recently emerge ...
IEEE COMPUTER SOC2023

Stop Wasting my FLOPS: Improving the Efficiency of Deep Learning Models

Angelos Katharopoulos

Deep neural networks have completely revolutionized the field of machinelearning by achieving state-of-the-art results on various tasks ranging fromcomputer vision to protein folding. However, their application is hindered bytheir large computational and m ...
EPFL2022

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.