Concepts associés (50)
Loi du χ
En théorie des probabilités et en statistique, la loi du (prononcer « khi ») est une loi de probabilité continue. C'est la loi de la moyenne quadratique de k variables aléatoires indépendantes de loi normale centrée réduite, le paramètre k est le nombre de degrés de liberté. L'exemple le plus courant est la loi de Maxwell, pour k=3 degrés de liberté d'une loi du ; elle modélise la vitesse moléculaire (normalisée). Si sont k variables aléatoires indépendantes de loi normale avec pour moyenne et écart-type , alors la variable est de loi du .
Espérance conditionnelle
En théorie des probabilités, l'espérance conditionnelle d'une variable aléatoire réelle donne la valeur moyenne de cette variable quand un certain événement est réalisé. Selon les cas, c'est un nombre ou alors une nouvelle variable aléatoire. On parle alors d'espérance d'une variable aléatoire conditionnée par un événement B est, intuitivement, la moyenne que l'on obtient si on renouvelle un grand nombre de fois l'expérience liée à la variable aléatoire et que l'on ne retient que les cas où l'événement B est réalisé.
Normally distributed and uncorrelated does not imply independent
In probability theory, although simple examples illustrate that linear uncorrelatedness of two random variables does not in general imply their independence, it is sometimes mistakenly thought that it does imply that when the two random variables are normally distributed. This article demonstrates that assumption of normal distributions does not have that consequence, although the multivariate normal distribution, including the bivariate normal distribution, does.
Information de Fisher
En statistique, l'information de Fisher quantifie l'information relative à un paramètre contenue dans une distribution. Elle est définie comme l'espérance de l'information observée, ou encore comme la variance de la fonction de score. Dans le cas multi-paramétrique, on parle de matrice d'information de Fisher. Elle a été introduite par R.A. Fisher. Soit f(x ; θ) la distribution de vraisemblance d'une variable aléatoire X (qui peut être multidimensionnelle), paramétrée par θ.
Multivariate t-distribution
In statistics, the multivariate t-distribution (or multivariate Student distribution) is a multivariate probability distribution. It is a generalization to random vectors of the Student's t-distribution, which is a distribution applicable to univariate random variables. While the case of a random matrix could be treated within this structure, the matrix t-distribution is distinct and makes particular use of the matrix structure.
Loi de Nakagami
En théorie des probabilités et en statistique, la loi de Nakagami ou loi de m-Nakagami est une loi de probabilité continue à deux paramètres et de support . Le paramètre est un paramètre de forme, le second paramètre permet de contrôler la propagation. Cette loi est liée à la loi gamma, son nom est issu du statisticien Minoru Nakagami. La densité de probabilité de la loi de Nakagami est donnée par : où est la fonction Gamma. Sa fonction de répartition est : où P est la fonction gamma incomplète (régularisée).
Complex normal distribution
In probability theory, the family of complex normal distributions, denoted or , characterizes complex random variables whose real and imaginary parts are jointly normal. The complex normal family has three parameters: location parameter μ, covariance matrix , and the relation matrix . The standard complex normal is the univariate distribution with , , and . An important subclass of complex normal family is called the circularly-symmetric (central) complex normal and corresponds to the case of zero relation matrix and zero mean: and .
Loi de Wishart
En théorie des probabilités et en statistique, la loi de Wishart est la généralisation multidimensionnelle de la loi du χ2, ou, dans le cas où le nombre de degré de libertés n'est pas entier, de la loi gamma. La loi est dénommée en l'honneur de John Wishart qui la formula pour la première fois en 1928. C'est une famille de lois de probabilité sur les matrices définies positives, symétriques. Une variable aléatoire de loi de Wishart est donc une matrice aléatoire.
Loi du χ² non centrée
En théorie des probabilités et en statistique, la loi du χ non centrée est une loi de probabilité qui généralise la loi du χ2. Cette loi apparait lors de tests statistiques, par exemple pour le maximum de vraisemblance. Soit X, k variables aléatoires indépendantes de loi normale de moyennes et variances . Alors la variable aléatoire suit une loi du χ non centrée. Elle dépend de deux paramètres : k qui spécifie le nombre de degrés de liberté (c'est-à-dire le nombre de X), et λ qui est en lien avec la moyenne des variables X par la formule : est parfois appelé le paramètre de décentralisation.
Quadratic form (statistics)
In multivariate statistics, if is a vector of random variables, and is an -dimensional symmetric matrix, then the scalar quantity is known as a quadratic form in . It can be shown that where and are the expected value and variance-covariance matrix of , respectively, and tr denotes the trace of a matrix. This result only depends on the existence of and ; in particular, normality of is not required. A book treatment of the topic of quadratic forms in random variables is that of Mathai and Provost.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.