Machine abstraiteEn informatique théorique, et notamment en théorie des automates, un automate abstrait ou une machine abstraite est un modèle théorique d'un ordinateur digital et discret. Il importe peu, dans ce cadre, de savoir si cet appareil peut effectivement être construit, mais plutôt d'appréhender, par ce modèle simplifié, le fonctionnement des machines, et de les comparer entre eux. La notion d'automate ou de machine abstraite, aussi appelé « modèle de machine » joue un rôle central en informatique théorique.
Machine de TuringEn informatique théorique, une machine de Turing est un modèle abstrait du fonctionnement des appareils mécaniques de calcul, tel un ordinateur. Ce modèle a été imaginé par Alan Turing en 1936, en vue de donner une définition précise au concept d’algorithme ou de « procédure mécanique ». Il est toujours largement utilisé en informatique théorique, en particulier dans les domaines de la complexité algorithmique et de la calculabilité.
Machine de Turing universellevignette|upright=1.5|Une machine de Turing quelconque M réalise un calcul à partir d'une entrée écrite sur son ruban. Une machine de Turing universelle U simule le calcul de M sur l'entrée de M à partir d'une description de M et de l'entrée de M écrits sur le ruban de U. En informatique, plus précisément en informatique théorique, une machine de Turing universelle est une machine de Turing qui peut simuler n'importe quelle machine de Turing sur n'importe quelle entrée.
Informatique théoriquevignette|Une représentation artistique d'une machine de Turing. Les machines de Turing sont un modèle de calcul. L'informatique théorique est l'étude des fondements logiques et mathématiques de l'informatique. C'est une branche de la science informatique et la science formelle. Plus généralement, le terme est utilisé pour désigner des domaines ou sous-domaines de recherche centrés sur des vérités universelles (axiomes) en rapport avec l'informatique.
Thèse de ChurchLa thèse de Church est une thèse concernant la définition de la notion de calculabilité. Dans une forme dite « physique », elle affirme que la notion physique de la calculabilité, définie comme étant tout traitement systématique réalisable par un processus physique ou mécanique, peut être exprimée par un ensemble de règles de calcul, défini de plusieurs façons dont on a pu démontrer mathématiquement qu'elles sont équivalentes.
Turing-completEn informatique et en logique, un système formel est dit complet au sens de Turing ou Turing-complet (par calque de l’anglais Turing-complete) s’il possède un pouvoir expressif au moins équivalent à celui des machines de Turing. Dans un tel système, il est donc possible de programmer n'importe quelle machine de Turing. Cette notion est rendue pertinente par la thèse de Church, qui postule l’existence d’une notion naturelle de calculabilité.
Fonction d'AckermannDans la théorie de la récursivité, la fonction d'Ackermann (aussi appelée fonction d'Ackermann-Péter) est un exemple simple de fonction récursive non récursive primitive, trouvée en 1926 par Wilhelm Ackermann. Elle est souvent présentée sous la forme qu'en a proposée la mathématicienne Rózsa Péter, comme une fonction à deux paramètres entiers naturels comme arguments et qui retourne un entier naturel comme valeur, noté en général A(m, n).
Fonction récursiveEn informatique et en mathématiques, le terme fonction récursive ou fonction calculable désigne la classe de fonctions dont les valeurs peuvent être calculées à partir de leurs paramètres par un processus mécanique fini. En fait, cela fait référence à deux concepts liés, mais distincts. En théorie de la calculabilité, la classe des fonctions récursives est une classe plus générale que celle des fonctions récursives primitives, mais plus restreinte que celle des fonctions semi-calculables (ou partielles récursives).