Résumé
In nuclear physics, atomic physics, and nuclear chemistry, the nuclear shell model is a model of the atomic nucleus which uses the Pauli exclusion principle to describe the structure of the nucleus in terms of energy levels. The first shell model was proposed by Dmitri Ivanenko (together with E. Gapon) in 1932. The model was developed in 1949 following independent work by several physicists, most notably Eugene Paul Wigner, Maria Goeppert Mayer, and J. Hans D. Jensen, who shared the 1963 Nobel Prize in Physics for their contributions. The nuclear shell model is partly analogous to the atomic shell model, which describes the arrangement of electrons in an atom, in that a filled shell results in better stability. When adding nucleons (protons or neutrons) to a nucleus, there are certain points where the binding energy of the next nucleon is significantly less than the last one. This observation, that there are specific magic quantum numbers of nucleons (2, 8, 20, 28, 50, 82, 126) which are more tightly bound than the following higher number, is the origin of the shell model. The shells for protons and neutrons are independent of each other. Therefore, there can exist both "magic nuclei", in which one nucleon type or the other is at a magic number, and "doubly magic quantum nuclei", where both are. Due to some variations in orbital filling, the upper magic numbers are 126 and, speculatively, 184 for neutrons, but only 114 for protons, playing a role in the search for the so-called island of stability. Some semi-magic numbers have been found, notably Z = 40, which gives the nuclear shell filling for the various elements; 16 may also be a magic number. In order to get these numbers, the nuclear shell model starts from an average potential with a shape somewhere between the square well and the harmonic oscillator. To this potential, a spin orbit term is added. Even so, the total perturbation does not coincide with experiment, and an empirical spin orbit coupling must be added with at least two or three different values of its coupling constant, depending on the nuclei being studied.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
PHYS-312: Nuclear and particle physics II
Introduction générale à la physique des noyaux atomiques: des états liés à la diffusion.
PHYS-461: Nuclear interaction : from reactors to stars
This course will present an overview of the nuclear interactions for neutrons on nuclei below a few hundreds of MeV. The aspect of so-called "nuclear data" will be presented from the perspective of ex
PHYS-756: Lectures on twisted bilayer graphene
Twisted Bilayer Graphene (TBG) is a change of paradigm in condensed matter: with flat topologic bands, it provides a platform for unconventional superconductivity, correlated insulation, Plankian meta
Séances de cours associées (28)
Systèmes laser : fonctionnement et applications
Couvre les bases du fonctionnement laser, les différents systèmes laser, les caractéristiques sonores et les démonstrations pratiques en laboratoire.
Gain - Élargissement de Doppler
Explore le processus d'amplification de la lumière et sa relation avec la structure atomique, les coefficients d'absorption et les indices de réfraction.
Introduction et révision de la physique nucléaire
Couvre les bases de la physique nucléaire, y compris la composition du noyau, l'énergie de liaison, le défaut de masse, les réactions nucléaires et la radioactivité.
Afficher plus
Publications associées (45)

Electromagnetic processes of nuclear excitation: from direct photoabsorption to free electron and muon capture

Simone Gargiulo

In the vast expanse of the Universe and on our planet, nuclei exist in a state of excitement. These excited nuclear states (isomers) can persist for varying periods, from fractions of a second to billions of years and beyond, before decaying to their groun ...
EPFL2023

Seismic Assessment of a Masonry Church and Retrofitting Propositions. Case study of the Kapela Sveti Nikola in Petrinja

The seismic assessment of historical unreinforced masonry buildings is a challenging task, because of their vulnerability to earthquakes and the uncertainties about the material properties. This work studies the case of the Kapela Sveti Nikola, a chapel in ...
2023
Afficher plus
Concepts associés (24)
Énergie de liaison
L'énergie de liaison d'un système de corps en interaction (atomes ou particules) est l'énergie nécessaire pour le dissocier. En chimie et en physique atomique l'énergie de liaison, dite aussi chaleur d'atomisation ou enthalpie de liaison, a pour origine l'interaction électromagnétique. En physique nucléaire l'énergie de liaison a pour origine l'interaction forte (notamment, entre quarks) et à un moindre degré l'interaction faible (pour les nucléides radioactifs β). Énergie de liaison (chimie) Énergie de dis
Interacting boson model
The interacting boson model (IBM) is a model in nuclear physics in which nucleons (protons or neutrons) pair up, essentially acting as a single particle with boson properties, with integral spin of either 2 (d-boson) or 0 (s-boson). They correspond to a quintuplet and singlet, i.e. 6 states. It is sometimes known as the Interacting boson approximation (IBA). The IBM1/IBM-I model treats both types of nucleons the same and considers only pairs of nucleons coupled to total angular momentum 0 and 2, called respectively, s and d bosons.
Formule de Weizsäcker
La formule de Weizsäcker, appelée aussi formule de Bethe-Weizsäcker, est une formule semi-empirique donnant une valeur approximative de l'énergie de liaison nucléaire B caractérisant la liaison entre les nucléons qui constituent le noyau des atomes (voir un résumé dans Modèle de la goutte liquide). L'éponyme de formule de Weizsäcker est le physicien allemand Carl Friedrich von Weizsäcker (-) qui l'a proposée en dans un article publié dans le de. Les physiciens Hans Bethe (-) et Robert Bacher (-) en ont simplifié l'expression en .
Afficher plus