Résumé
En analyse numérique, une fonction de base (ou basis function en anglais) est une fonction apparaissant dans une « base » fixée d'un espace fonctionnel. Selon le contexte, une base peut désigner : une base d'un espace vectoriel : la suite (X) est une base de l'espace R[X] des polynômes à coefficients réels, et les monômes X en sont les fonctions de base. une base de Hilbert d'un espace de Hilbert : dans la théorie de Fourier discrète, les fonctions trigonométriques x ↦ cos(nx) et x ↦ sin(nx) sont les fonctions de base d'une base Hilbert de L(R/Z, R). une base de Schauder dans un espace de Banach : dans l'étude des ondelettes, le système de Haar est une famille de fonctions de base de l'espace L([0, 1], R) pour 1 ≤ p < ∞. L'expression « fonction de base » est également utilisée en mécanique quantique. Ainsi, en chimie quantique, les fonctions de base peuvent être des fonctions d'onde radiales décrivant les orbites moléculaires. On la retrouve également en traitement du signal (qui utilise la théorie de Fourier), où un signal périodique peut être décomposé selon une famille de signaux de base, comme les signaux triangulaires. En informatique, la peut utiliser la théorie des ondelettes, dans laquelle des fonctions de base sont définies.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (2)
Série de Fourier
vignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
Fourier analysis
In mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.