En analyse numérique, une fonction de base (ou basis function en anglais) est une fonction apparaissant dans une « base » fixée d'un espace fonctionnel. Selon le contexte, une base peut désigner : une base d'un espace vectoriel : la suite (X) est une base de l'espace R[X] des polynômes à coefficients réels, et les monômes X en sont les fonctions de base. une base de Hilbert d'un espace de Hilbert : dans la théorie de Fourier discrète, les fonctions trigonométriques x ↦ cos(nx) et x ↦ sin(nx) sont les fonctions de base d'une base Hilbert de L(R/Z, R). une base de Schauder dans un espace de Banach : dans l'étude des ondelettes, le système de Haar est une famille de fonctions de base de l'espace L([0, 1], R) pour 1 ≤ p < ∞. L'expression « fonction de base » est également utilisée en mécanique quantique. Ainsi, en chimie quantique, les fonctions de base peuvent être des fonctions d'onde radiales décrivant les orbites moléculaires. On la retrouve également en traitement du signal (qui utilise la théorie de Fourier), où un signal périodique peut être décomposé selon une famille de signaux de base, comme les signaux triangulaires. En informatique, la peut utiliser la théorie des ondelettes, dans laquelle des fonctions de base sont définies.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
ME-608: Methods of asymptotic analysis in mechanics
The introduction to asymptotic analysis provides the basis for constructing many simplified analytical models in mechanics and for testing computations in limiting cases.
AR-415: UE L : Art and architecture: constructing the view I
The ability to represent ideas coherently and communicate a project’s aims effectively is a key skill for every architect. Design, painting, photography, modelling and graphics are essential to the
Séances de cours associées (12)
Série Fourier : Cas complexe
Couvre le calcul des coefficients de Fourier pour les signaux périodiques complexes et le concept d'un système orthonormé complet.
Signaux et systèmes I: corrélation croisée et convolution
Explore la corrélation croisée, la détection de signal, les espaces de Hilbert, l'approximation orthogonale et la compression d'image à l'aide de DCT.
Méthode des éléments finis : Error Estimation
Explore l'estimation des erreurs a priori dans la méthode des éléments finis, couvrant l'analyse de convergence, l'orthogonalité, les formulations faibles et la précision optimale.
Afficher plus
Publications associées (30)

Elimination of ringing artifacts by finite-element projection in FFT-based homogenization

Till Junge, Ali Falsafi, Martin Ladecký

Micromechanical homogenization is often carried out with Fourier-accelerated methods that are prone to ringing artifacts. We here generalize the compatibility projection introduced by Vond.rejc et al. (2014) [24] beyond the Fourier basis. In particular, we ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2022

Function Integration, Reconstruction And Approximation Using Rank-1 Lattices

Fabio Nobile, Giovanni Migliorati

We consider rank-1 lattices for integration and reconstruction of functions with series expansion supported on a finite index set. We explore the connection between the periodic Fourier space and the non-periodic cosine space and Chebyshev space, via tent ...
2021

Wavelet-Fourier CORSING techniques for multidimensional advection-diffusion-reaction equations

Fabio Nobile, Simone Brugiapaglia

We present and analyze a novel wavelet-Fourier technique for the numerical treatment of multidimensional advection–diffusion–reaction equations based on the COmpRessed SolvING (CORSING) paradigm. Combining the Petrov–Galerkin technique with the compressed ...
2020
Afficher plus
Concepts associés (2)
Série de Fourier
vignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
Fourier analysis
In mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.